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CHAPTER I

SIMPLE GROUPS AND GROUP VELOCITY

1. Introduction. In the theoretical analysis of wave motion

the simplest form is that of an infinite train of regular waves repre-

sented by cos K(X Vt\ where Ox is in the direction of propagation
and V is the velocity of transmission of phase. If the medium in

which the motion occurs is such that V is the same for infinite

trains of all wave-lengths, the velocity V has additional physical

significance ;
it is for instance the rate of advance of a finite train

of waves, or of any arbitrary disturbance, into a region previously

undisturbed, or again it is the rate of transmission of energy. But
if the phase velocity F is a function of the wave-length, a fact which

we may express by describing the medium as dispersive, we have no

longer this ideal simplicity ; in general the various velocities we have

mentioned are all different, and depend upon the circumstances of

each case. The present Tract deals with the manner in which a

limited initial disturbance spreads out into a dispersive medium, and

with allied problems. A considerable amount of research has been

carried out in this direction in various fields
;

it is hoped that gain

may result from the act of collecting the main results and setting

them in relation to each other. It is unnecessary to state in detail

the method of treatment, as that may be inferred from the list of

contents and from the bibliography. The leading general ideas are

those of a group of waves and group velocity, arid the work is largely

a series of illustrations and applications of these in various regions.

It is hardly necessary to explain that there is no attempt to give here

a complete study of any subject from which illustrations are drawn
;

for example, the list of references to work on water waves includes

only those which deal especially with the present point of view and

others to which reference is made for comparison of results, and a
1

similar remark applies to the chapter on optical problems. The first

H. 1



2 INTRODUCTION [CH.

analytical expression of group velocity is usually ascribed to Stokes

(1876) with subsequent development by Lord Rayleigh. It appears

however that as early as 1839 Hamilton had made investigations into

the rate of advance of a finite train of waves in a dispersive medium ;

unfortunately his researches were only published in short abstracts and

have been entirely overlooked until recently. Later extensions have

originated in the group method of approximation ,d\ie to Lord

Kelvin. These methods, and their applications, occupy the first five

chapters of this Tract, including a short discussion of the action of a

prism. The sixth chapter is devoted to the important dynamical

significance of group velocity in connection with the rate of transmission

of energy. In the last chapter we deal with more general methods of

treating the Fourier integral which represents the disturbance, more

especially in cases where it represents a discontinuous function, that

is where the medium is such that there may be a definite wave-front

travelling with finite velocity.

2. Definitions of Simple Group. If one observes a finite

train of waves advancing over the surface of still water, it will be seen

that the individual waves move more quickly than the group as a

whole
;

as the group advances new waves arise at the rear, move

through the group, and disappear at the front. For an explanation

of this phenomenon, which seems to have been recorded first by Scott

Russell (2)
,
we must analyse the group into component simple harmonic

waves of various wave-lengths, each component moving with the phase-

velocity appropriate to its wave-length. Leaving the particular

problem for more detailed study later, we begin with an ideally simple

case. Consider the superposition of two infinite simple wave-trains in

a dispersive medium
;
the combined effect is given by

2_.

y -A cos-y (x
-

Vi) + A cos -rr (#
-

V't] ......... (1).

We suppose the waves to be of equal amplitude, and the wave-lengths
A and A' to differ by a small amount d\

;
the phase-velocities V

and V differ by a corresponding small amount. With these con-

ditions, we have approximately

(x- Vt} ......... (2),

where U= ^-\ ..........................
(3).



IJ DEFINITIONS OF SIMPLE GROUP 3

The expression (2) may be regarded as representing at any instant

a train of wave-length A whose amplitude varies slowly with x in

a long period of distance 2A2
/<A. The point at which any given

amplitude, say the maximum, is to be found moves forward with a

velocity f/, called the group velocity. We may express this also by

noticing that in the vicinity of an observer travelling with velocity I7
y

the disturbance continues to be an approximately simple harmonic train

of assigned amplitude and of wave-length A. The formula (2) does not

represent a form which moves forward unchanged ; but it has a certain

periodic quality, for the form at any given instant is repeated after

equal intervals of time A/(]
/r

/7) displaced forward through equal

distances A/7/(F~ 17).

This form of group maybe generalised to include any finite number
of component wave-trains, if we write

y = 2 C cos K
( Vt x a),

where the summation covers a series of terms in which K and V
vary only slightly. Defining the phase of any term as the whole

argument of the trigonometrical function, its value at time t + dt at a

place x + dx differs from its value at time t at the position x by an

amount K Vdt Kdx. Hence fhe change of phase will be approximately

the same for all the terms of the series if

d(icV).dt-dK.dx = ..................... (4).

From this point of view the velocity of the group is given by

dt

an expression which agrees with the form (3).

Another equivalent form for U may be noted ;
if we write n for

frequency (n equal to K V} we obtain the Delation

1 1 _ n dV_ , .

U~ V V* dn
........................W *

So far we have considered a group as built up from infinite trains

of simple harmonic waves. To look at the matter from another point

of view let us begin by defining a group as a long train of waves in

which the distance between successive crests, and the amplitude, vary

only slightly. We shall see later, in various examples, that this state

of affairs may arise from the effects of a limited initial disturbance in

a medium in which the wave velocity varies with the frequency ; after

a certain time the disturbance is a wave system in which the different

12



DEFINITIONS OF SIMPLE GROUP [CH.

wave-lengths, travelling with different velocities, become gradually

separated out. Thus in the vicinity of any point at any instant the

waves are approximately simple harmonic and of wave-length X, but

the value of X will vary with the position and with the time ;
X may

then be regarded as a function of x and t. Further, we may imagine

the observer to move so as always to remain in touch with any assigned

value of X
;
let us then define the group velocity U as the velocity of

a point moving so that the disturbance in its neighbourhood appears as

an approximately simple train of assigned wave-length X. We can find

an expression for U which results from these definitions.

The rate of change of wave-length is zero for an observer travelling

with velocity U, hence

ax _ax
-**
dt

.(7).

Further, if we imagine a point travelling with the waves, the rate

of change of wave-length is

ax lr ax_ + V-^- ;

ut QX

but this rate, which is also the rate of separation of two consecutive

wave crests, is also equal to \dVjdx, or to XdF/^X. d^dac. Hence

we have
a\ 2\ a 17 s\

(8).

ax _
dt a# ax

The equations (7) and (8) give for U precisely the same expression

as in (3) ; accordingly the

various points of view give

consistent results.

The formula is capable

of a geometrical interpreta-

tion. If a curve is drawn to

represent the relation between

V and X, as in Fig. 1, the

group velocity corresponding

to a point P is given by OQ,
the intercept made by the

tangent at P on the axis of

V.

Fig. 1.

Q



SIMPLE GROUP AS AN INTEGRAL

3. Simple Group as an integral. We may generalise

further the expression for a simple group by considering an infinite

series of terms clustered round a central term of given wave-length ;

replacing summation by an integration we have now

(9).

We use the exponential form for simplicity, taking real parts of

the expressions ultimately. The range of integration is supposed to

be small and the amplitude, phase and velocity of the members of the

group are assumed to be continuous, slowly varying, functions of *.

Granting that K V can be expanded in a Taylor's series we have

Neglecting second and higher powers of K - *
, and substituting

in (9) we obtain

where U d(< F)/rf*.

Hence we obtain, in real quantities,

(dV\
f
K^ +e

K *t
) J

CK COS {K (x
-

f/"
-

a} rfic

VK0/ ,'cj-e

a}rfK ...... (11).

Each integral by itself represents a form which is propagated with

velocity C7 without change of type, and we can express the whole

disturbance in the form

=f(x- U.f) cos KO * + F (x
-

U.f) sin

... (12).

We have the same interpretation as in the previous simpler cases.

For the neighbourhood of a point travelling with velocity UQ the wave

form is approximately simple harmonic of wave-length 27r//c . Also the

actual form at any instant is repeated after a time 27r/* (T7 - F )

moved forward through a distance 2irD
r

/*c (ET
- F

).
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It should be noticed that the above expression is only strictly

correct for a medium in which U is independent of *, that is when

V~a + b\; we shall examine this case in more detail later. In

general the approximation implies that

is small. The larger the value of t the smaller must be the range 2e

of integration. In other words, as time goes on the group represented

by (9) becomes itself separated appreciably into constituent simpler

groups to each of which the previous analysis may be applied. We
shall return to this point of view when considering the Fourier

integral representing an arbitrary limited initial disturbance.

4. Hamilton's theory of a finite train of waves. The

problem which presents itself most frequently is the manner and rate

of advance of a finite train of simple waves into regions previously

undisturbed, assuming that its identity persists appreciably. We shall

see later that such a train may be regarded in the main as a collection

of simple groups ;
if the train contains initially a large number of

waves of wave-length X, it approximates the more closely to a single

group associated with the wave-length X. In 1839 Hamilton had

studied certain problems of this nature and communicated short

abstracts of his results to the Royal Irish Academy ;
for details

reference was made to the memoir itself,
" which will be published in

the Transactions of the Academy, and will be found to contain many
other investigations respecting vibrating systems, with application to

the theory of light." Unfortunately this intention does not appear
to have been carried out; the memoir has not been traced in any

publication. It may be of interest to reproduce the main results

which were obtained by Hamilton.

"An indefinite series of equal and equally distant particles,

m_ ly w
, TWj,..., situated in the axis of #, at the points ...-1, 0, + 1,...,

being supposed to receive, at the time 0, any very small transversal

displacements ...y-i f0 , 2/0,0, #i,o>---> and any very small transversal

velocities y_i,o> #<>,< #i,o>*--> it is required to determine their dis-

placements . . ,y_!, , , y^ t , yl
1
1 ,

. . . for any other time t
;
each particle being

supposed to attract the one which immediately precedes or follows it

in the series, with an energy equal to a3
,
and to have no sensible influence

on any of the more distant particles/
' The problem is considered as
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equivalent to that of integrating generally the equation in mixed

differences

#M = (l
*

(y*+M
~ 2#M + y*-l,0-

The solution is given in the form

TT

2 oo r~2

f/e t
- - 2 yx+l I cos 210 cos (2at sin 0) dO* '

7r?=-oo yo

+ 2 yx+i^ \
cosec cos 2/0 sin (

62at sin 0) dO,
(tir i= oo

'

y o

the first line expressing the effect of the initial displacements, the

second that of the initial velocities. [These integrals could of course

be written and evaluated as Bessel functions.]

Suppose now that the initial conditions are such that

7T . 7T . 7T

yx o
-

t) vers x
j yx Q

~
(tY) sin sin &x ~

for all values of the integer x between the limits and -
rn, r

and n being positive and large, but finite integers, and that for all

other values of x the functions yXt
and yx^ vanish : which is equivalent

to supposing that at the origin of t, and for a large number r of wave-

lengths n behind the origin of x, the displacements and velocities of

the particles are such as to agree with the undulation

*,
= 1

7 vers f2#- - 2^ sin
-J

............... (13),

but that all the other particles are, at that moment, at rest : it is

required to determine the subsequent motion. The solution in this

case is given by

T) ( . ?r\
2

/ sin rnO cos (2#0 + rnO - 2at sin 0}
yT f

= - (sin-) /
. -7T-

----
-; ,- \

-

dO,y '

TT V nj J sin cos 6 - cos (w/w)
'

an expression which tends indefinitely to become

y^t-^'n vers (%x 2at sin -
)\ fl IV I

V /. ^\
2

/'

7r sin (2x6 -2at sin 0) ,.- --
(
sin -

)
. -}

--
^ 7-7-^7 ^

2ir \ n) } sin {cos
- cos (w/n)}

as the number r increases without limit. The approximate values

which these rigorous integrals acquire, when the value of t is

large, are discussed. It is found that a vibration, of which the phase
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and the amplitude agree with the law (13), is propagated forward, but

not backward, so as to agitate successively new and more distant

particles (and to leave successively others at rest, if r be finite), with

a velocity of progress which is expressed by a cos -
,
and which is

ti

therefore less, by a finite though small amount, than the velocity of

passage a - sin ^ of any given phase, from one vibrating particle to
7T yi

another within that extent of the series which is already fully agitated.

In other words, the communicated vibration does not attain a sensible

amplitude until a finite interval of time has elapsed from the moment

when one would expect it to begin, judging only by the law of the

propagation of phase through an indefinite series of particles which

are all in vibration already. A small disturbance, distinct from the

vibration (13), is also propagated, backward as well as forward, with a

velocity a, independent of the length of the wave. [The latter would

be expressed now in terms of the Kelvin group method as a predominant

group associated with n - x>
, forming what might be called a solitary

wave propagated with velocity a, the limiting value of the phase

velocity for infinitely long waves.]

Hamilton then proceeds to more general equations which are said

to be analogous to, and to include, those which Cauchy has considered

in his memoir on the dispersion of light. The solutions are discussed

and lead to the following conclusions among others. If initially there

is a finite train of undulations

y = cos (f 4- st K#),

valid for a large range of negative values of x limited by the origin ;

then we have the approximate expressions for subsequent times

. - . ds
# = 0; if

ff>*^

y = A cos (c' 4- st KX) ;
if x < t-j ,

Gt/K

and the latter becomes more nearly true as the values of x and t

become larger.
44 The formulse lead to this remarkable result, that the velocity with

which such vibration spreads into those portions of the vibratory

medium which were previously undisturbed, is in general different

from the velocity of a passage of a given phase from one particle to
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another within that portion of the medium which is already fully

agitated ;
since we have

but

velocity of transmission of phase = -
,

ds
velocity of propagation of vibrating motion - ~

.

Applied to the theory of light, it appears to show that if the phase

of vibration in an ordinary dispersive medium be represented for some

one colour by

so that X is the length of an undulation for that colour and for that

medium, and if it be permitted to represent dispersion by developing

the velocity !/// of the transmission of phase in a series of the form

then the velocity wherewith light of this colour conquers darkness, in

this dispersive medium, by the spreading of vibration into parts ivhich

were not vibrating before, is somewhat less than l//x, being represented

by this other series

We may notice that Hamilton operates with a long train of waves

which is effectively equivalent to a simple group ;
we shall see later

that there is an actual wave-front which moves with a velocity equal
to that of light in free space, but the magnitude of the disturbance so

propagated is negligible compared with that of the main group.



CHAPTER IT

VELOCITY OF LIGHT

5. Fizeau's method. We consider now some early applica-

tions of group velocity in connection with various methods of

determining the velocity of light.

In Fizeau'a method a parallel beam of light passes through the

gaps in a rotating toothed wheel, is reflected back along its path and

passes again through the wheel and so to the eye of the observer
;

it

is found that the observed intensity of light varies periodically with

increasing speed of rotation of the toothed wheel. One can see in a

general manner that one has to deal with the forward motion of finite

lengths of a beam of light. Since the wave-length is very short, the

finite wave-train will be to a large extent like the simple groups

already analysed ;
thus the velocity which enters into the calculations

will be the group velocity U and not the phase velocity V. In other

words, we are dealing with the propagation of a variation in amplitude

impressed upon a wave-train, and this involves the group velocity U.

It can be shown with more detail how the light consists of a group
of simple waves of different frequencies

(1B)
. Let the axis Ox be in the

direction of the beam of light, the toothed wheel being at #=0;
consider the vibration in the region of x positive, assuming that the

medium is non-dispersive. Then if it represents the light-vector,

the differential equation to be satisfied is

Idealise the action of the toothed wheel and suppose its effect is to

produce a continuous variation of period 2v/v in the intensity of light

at the origin ; then if the period of the light vibration is 2w/n 9 we
have the condition

ti = A cos
2
\vt sin nt, forr~0 ............... (15).
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Further suppose that at the initial instant the light was passing

through undisturbed, like a simple wave

4
' f* Au = A sin n( t 1 .

Then we have the conditions

nx nx> . /ftO VI& . fit*; n , ~ /.. y\
u = - A sm

;
= nA cos ;tor-0 (16).

C c'v C

The solution of (14) under the conditions (15) and (16) can be

obtained by Riemann's method. Write y for ct
;
then the data of the

problem are the values of du/da and du/dy along the axes of x and y.

We have in fact

du n 4 nx du n
4

nx fA CQg . = _ ^[ C0g .__ .

f0r y
-

fa? c c oy c c

du 1 v . . v?/ . ny n . v?/ w/ d^ ^? .

r- = - - -4 sm --- sin A cos" v- cos : ^ = -
,,

: tor .^ = 0.
dx 2 c c c c 2c c ozy

?^

If P (x, y} is the point at which
y

we require the value of u, we

draw the characteristics through
P to cut the axes in a and 3.

Then the general solution is

'dx'

~ ua

(P fdll 7 du ^ \
+ I (-- dy + ^ dx]

,

where the integration follows the

path aO/3.

Noticing that rf^ is zero along

aO, and
rf?/

zero along 0/3, and that

a is the point (0, y x) and /? the

point (y + #, 0) we obtain

\ w / \ <
n / \

' - x) sin - (y-x}~ A sin -
(# + y)

Fig. 2.

2i* = . cos --

1 v

s --
2 c

r . v?/ . w
/ sin *- sin
J , ( Cj

cos
y- X

x nx j
cos dx.

n
,

y

+ ~A
c 7o c

On evaluation and putting ct for y we obtain finally

u- -A sin
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The result is that after the light has passed through the rotating

screen it can be analysed into components of three different frequencies,

3ne of the original value n and the other two n + v and n - v. The

number v in the actual problem depends on the number of teeth in

the wheel and its angular speed ;
in any case it is small compared

with n. Consequently the light is in fact substantially a simple group
of waves. If the medium is dispersive the solution (17) does not hold

exactly, since the differential equation (14) is no longer true
;
we

may however assume it to hold approximately with the various terms

having wave velocities corresponding to their frequencies. Hence the

velocity determined by Fizeau's method is the group velocity U, a

result which may be confirmed by a more detailed study of the intensity

of the light after passing through a second toothed wheel rotating in

synchronism with the first.

6. Aberration. It is generally stated, after Lord Rayleigh^,
that the velocity deduced from measurements of aberration must give

the phase velocity V and not the group velocity [7, since it does not

depend upon observing the propagation of a peculiarity impressed upon
a train of waves and therefore has no relation to 17. This statement

has been criticised recently by Ehrenfest (16)
,
who compares the circum-

stances in aberration with the following scheme. Two parallel infinite

Y"

Fig. 3.

plates, each with an opening, move with common uniform velocity v

from left to right. Monochromatic light falls normally upon the

upper plate. It is required to determine the angle through which

the lower opening must be displaced relatively to the upper one so

that an observer placed there would receive maximum intensity of
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light. It appears that this angle depends on the velocity with which

finite trains of light waves move forward, that is upon the group

velocity. Lord Rayleigh (7) admits that Ehrenfest has shown that the

circumstances in aberration do not differ materially from those of the

toothed wheel in Fizeau's method, although the peculiarity imposed

upon the regular wave motion seems to be artificial rather than

inherent in the nature of the case
;

he also supplies an alternative

analysis.

Homogeneous plane waves moving parallel to Oz with velocity V
are incident normally upon an ideal screen occupying the xy plane.

The effect of the screen is to make the amplitude have a factor

cos m (vt
- x\ where m and v/ V are small, so that the amplitude has

a variation of long period which travels slowly along Ox. In the

absence of the screen we should have

u cos (nt KZ\

giving u - cos nt for z = 0.

With the screen in operation we have

u - cos m (vt
-
x) cos nt, for z -

= cos {(n + mv) t - mx} + \ cos {(n mv) t + mx}.

Hence at positions beyond the screen we have

u = \ cos {(n + mv) t - mx - ^z} + \ cos {(n mv) t + mx -
^z],

where /^ and ^ are determined so that u satisfies

&u &u 1
d^u

to2
"
4
"

a?
~
rav

for each wave separately with the requisite value of K, the medium

being dispersive. We have therefore

Further, the expression for u can be put in the form

u = cos [mvt -mx-\ (/*,
-

/*.2) z} cos {nt
-
\ (^ + ^) z},

where the first factor may be regarded as an amplitude slowly

varying with t. Thus the lines of constant amplitude at a given

time are

mx + J (/AJ /i2) z
= constant.

The amplitude which occurs at x - also occurs along the line

z 2 m
We may regard the aberration angle as given by (^ -
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Prom (18), since m and vf V are small we have

[CH.

with a similar expression for /xa . Hence we obtain for the aberration

angle, using also (6),

Mi
~

f4 _
nv i'I _ 1 d V\ _ v_

2m~
= y U

"
V dn)

~
TJ

'

In this illustration the group velocity occurs in the result because

the expression of the variation involves the introduction of more than

one frequency.

A method which seems less artificial in its application to aberration

may be obtained by using the Doppler principle which allows a varia-

tion in the effective frequency or wave-length of the light emitted by
a moving source. Let 8 be a source of light giving out vibrations of

frequency n and moving with uniform velocity v along a line OS. At

the instant when the source is at S the light received by an observer

Fig. 4.

at P was emitted by the source at some time t previously, the source

being then at 0, where OS = vt. The vibrations emitted at in the

direction OP have a wave-length which is shortened owing to the

velocity of along OP relative to P. If T is the velocity of waves

of frequency n and if vf\
r

is small we may say that the effective

frequency of the vibrations along OP is
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and consequently the velocity of the waves along OP is

V nV COS ^^
With OP equal to r we have

- nv cos d V

This equation defines the wave surface near P at the instant in

question, namely when the source is actually at $, But to first

powers of v/ V the equation represents a sphere of radius Vt with its

centre at C such that

CP=Vt; V dn
'

Thus to an observer at P the source appears to be at C ; and the

aberration angle <f> is given by

.
,

OS I / nvdV\ v

7. Foucault's revolving mirror. In this method one

measures the rotation of a beam of light which is reflected from a

rotating mirror to a fixed mirror and back to the rotating one for

another reflection. The velocity which is measured in this way has

given rise to some discussion ; Lord Rayleigh obtained K2

/U in a

calculation which was withdrawn later, Schuster (lo >

gave V*\($V - 17),

and Willard Gibbs (11)
simply the group velocity U. Some experiments

by Michelson appeared to favour the latter result. He caused the

beam of light to pass through carbon disulphide in its path between

the two mirrors, so as to have an appreciable difference between U
and V\ assuming a mean frequency for the light, which was only

approximately monochromatic, the velocity V computed from ob-

servations was given by c/ V - 1*76 + 0*02, c being velocity of light in

free space. The corresponding numbers obtained by calculation were

= 1-745
;

C(2^/) - 1-737.

We may apply Doppler's principle to this problem in a manner

suggested by Gouy (8)
.

If a source of light is in front of a plane mirror moving towards it

with velocity v, the velocity of the image is 2v. Thus in the reflection

of a beam of plane waves by a mirror rotating with angular velocity o>

we may regard an element of the mirror at distance r from the axis of
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rotation as a source of light moving with velocity 2m As in the

previous section, it follows that the velocity of waves of frequency p
for normal reflection is altered to

v 2rom dV
V *

V dn

at each point. In any case, whether the reflection be normal or not,

after reflection the planes of equal phase have an angular velocity

of rotation in space equal to

Let I be the distance between the rotating and fixed mirrors. The

total rotation of the beam is made up of two parts, one due directly

to the rotation of the moving mirror and the other to the rotation of

the planes of equal phase ; taking account of the directions of these,

we have

**i++- (o 2 (U~ ^H 2/ 4/w
total rotation- s2u>- -- -

'

[
T>= -77-

By this method it appears that it is the group velocity U that is

measured.

8. Gutton's experiments. Some interesting experiments
have been made recently by Gutton (17) on the velocity of light in

dispersive media. The method makes use of two facts : under certain

conditions the velocity of high frequency electric waves along wires is

practically equal to the velocity of light in free space ;
also when

carbon disulphide is submitted to the action of an electric field it

becomes doubly refracting. Fig. 5 shows a diagrammatic plan of the

apparatus. Electric oscillations are generated at E and separate at

along the wires OA, OF. The length of wire in one arm is capable

of accurate adjustment at H. C^ and (?2 are condensers containing

carbon disulphide ;
in d the plates are vertical, in (X they are

horizontal. >S is the source of light, P the observing telescope ;
J/and

N are two crossed Nicol prisms with their principal sections at 45
;

L is a tube containing the dispersive medium through which the light

passes. An experiment is made by first setting the analysing prism

for extinction, when there are no electric waves. Then electric waves

are sent from along the two branches to the condensers Cl and C^.

When the waves reach Ci they charge the condenser and make the

carbon disulphide doubly refracting ;
thus the light is depolarised at d.
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If when the light reaches C2 it finds this condenser in the same state as

that in which it left C, ,
then the polarisation is re-established, for the

plates of the condensers are crossed. In this case the light will be

rejected by the analysing prism. It follows that the time taken by
the electric waves for the path OABCl together with the time for

the light to traverse the path C^C^ must equal the time for the electric

waves for the path OFHC^ By making experiments with and without

the tube L, one can deduce the time for the light and hence the

velocity of the light in the liquid contained in the tube.

The peculiarity impressed on the train of light-waves in this case

is a periodic variation in the state of polarisation. The analytical

expression of such a beam of light necessarily involves more than one

frequency ; consequently we should expect that in this case also the

velocity deduced from the experiments would be the group velocity U.

The results confirm this interpretation. If V is the observed velocity,

C the velocity of light in air, Gutton obtained the following measure-
ments.

For water, C\ V equals 1'32 for yellow light, 1*36 for blue. These

values are practically those of the ordinary index of refraction, 1*33

and 1*34. However, for water the values of /7and V are practically

the same in this region.

The results for more highly dispersive liquids like carbon disulphide
and naphthalene monobromide are shown in Fig. 6.

The crosses show the experimental values of C\V ; the lower curve

2H.
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in each case is drawn from the ordinary index of refraction Of V, while

the upper curve represents Of U. One sees that V is practically the

same as the group velocity U9 allowing for experimental errors.

V5

Carbon disulphide

2-0

0-7/A

Monobrom. naphthalene

JFig. 6.



CHAPTER III

THE KELVIN METHOD FOR A LIMITED
INITIAL DISTURBANCE

9. The Fourier integral for a concentrated initial

disturbance. Let y, the vector whose variation we are considering,

be a displacement and suppose it a function of position x and time t.

Let the initial conditions be

We assume that the function /(#) which we use in physical problems
can be in general expressed as a Fourier integral in the form

^
r<x> r<x>

(#)
= -

I dK I

IT JO J -o
cos *#

cos ^ ^ ~ * + " ^ * cos

If in addition / (#) is an even function of x, the initial displacement

being symmetrical with respect to the origin, then

J
/-oo /-co

f(x) - -
I < (K) cos KX C[K, where <(*)- I /(<) cos *w da. . .(20).K JO ./--oo

If V is the velocity of waves of length 2?r/K, the solution for y at any
subsequent position and time with the given initial conditions is

i r
"

/
7r y

Let /(^?) be zero everywhere except in the range
- < x < and let it

have a constant value l/2c in that range. Then we have

,, ^ [* I j sin *
9 (*) = I ^~ cos KU> rfo> -- .

j-e 2 K

In the limit when = we have <#> (K)
= 1. The initial disturbance is

then an infinitely intense displacement concentrated at the origin ;
at

any subsequent time

y = f"cos K (x
-

Vf) dK + ~ f^cos *
(a?

+ Vf) dK ...(21).

22
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A method of evaluating integrals of this type by approximate

group methods has been given by Lord Kelvin*18
*. We confine our

attention to one of the integrals in (21), namely
x>

cos K (x Vt) d* (22).

We shall assume for the present that V has one value, real and

positive, for all positive real values of *, and we also ignore mean-

time any difficulties which may arise from non-convergence of the

integral. The integral represents the disturbance as the superposition

of the effects of an infinite number of trains of simple waves of all

possible wave-lengths and of equal amplitude. Initially all the wave-

trains have the same phase at the origin and their effects reinforce

each other there
;

at other places there are differences of phase

resulting in mutual interference and zero displacement. At any

subsequent time the effect can be obtained by summing the contribu-

tions of all the regular wave-trains when each has been moved forward

a distance corresponding to its wave-velocity. Now it is clear that at

no subsequent time will all the wave-trains in (22) agree in phase at

any position (except in certain particular cases of V as a function

of K). But we may be able to find positions and times at which an

exceptionally large number of elements have the same phase ;
if this

were the case, these elements would reinforce each other arid would

produce the predominant part of the total effect, all the other elements

mutually interfering owing to differences of phase. Thus we may be

able to select for proper values of x and t a predominant group from

the integral, consisting of an infinite number of terms clustering round

a certain central value * and represented by an integral such as we

considered in 3. The state of affairs we have described will occur

when the phase is stationary with respect to K
; hence the condition is

d
, ,

or x-l7t = 0-} where / =
->- ("10 (23).
CuK

U is the group velocity for waves of length *, and the equation we

have obtained gives the time for a given position, or the position for

a given time, at which any assigned wave-length is the predominant

wave-length. In other words, if a point start from the origin and

move with any assigned velocity U, the predominant wave-length

in the neighbourhood of the point will be that for which the group

velocity has the value U.
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It appears then that we may speak of points of predominance
of wave-trains of nearly equal wave-length and velocity. In the

particular problem under discussion these points of predominance are

initially concentrated at the origin. At any subsequent time each has

travelled out at its corresponding group velocity. As time goes on

the separation of these points becomes more and more complete, the

wave form in the neighbourhood of each becoming continually more

nearly homogeneous. It follows from the relation (23) that the points

of predominance of waves * and * + 8* are continually separating from

each other at the rate

dU s
~r~ . OK.
a*

Thus the points of predominance for lengths between * and K + 8*

occupy at time t a length of the medium given by

OK.

In course of time this becomes appreciable no matter how small 8* may
be, provided dU/dn is not zero. We have noticed a similar result

already in 3 when dealing with a group defined by

I CK cos {* (x
-

Vf) a} d<.
Jito-e

10. Evaluation of a predominant group. Assuming now
that sufficient time has elapsed for the predominant group at any time

and place to give the main part of the disturbance, we have to evaluate

it. Let K be the predominant value at position x at time t and

suppose that the phases of the members of the group are given with

sufficient accuracy by three terms of a Taylor series, namely

K^tP
KyJ U/ . ,

i
_ v .

x _ /o
<-)2

(24).

^
,

, T
_ ..

since -T- {f (*
- V t)\ =x- U9 t = 0.

We have then to evaluate a group of the form
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Suppose that t is of sufficient value so that \ t
( -7- ) (*

- *
)
2
is very

\ MK/Q

large at the limits of this integral ;
then if we change the variable by

putting

we may take the limits for o- to be oo . We obtain for the value of

the predominant group

1 ' 2 r ' ' - -
r (25),

where the upper or lower sign is taken according as f -y-
J

is positive

or negative.

f f X 71
"

Since I cos <r*d<r = / sin o-
2
do- = . / -

,

y-oo y-oo v *

we have
1

V't)f ......... (26)>

in which * can be replaced in terms of x and t from x - UQ t
= 0.

Returning to the complete solution in (21) with two integrals, we

have found an approximate value (26) for the first when x and t

satisfy x - Ut -
;
we obtain a similar result for the second under

the condition x+ Ut = 0. Hence when ?7is positive, as is usually the

case, and when t is positive, the main part of the disturbance in

the region of x positive is supplied by the first integral only, and for x

negative by the second integral.

We may notice that for a certain type of medium the group
solution may hold for all values of t

;
this occurs if the equation (24)

is exact, that is if d^U/dx* and higher derivatives are zero. We also

leave for further consideration, as they occur, cases when dU/dK is

zero or when the predominant value of * coincides with one of the

limits and QO.

It may be that x - Ut - as an equation for * has more than

one real positive root. In this case there is a predominant group
for each value of K and the total effect is given by a sum of terms

like (26).
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11. Some geometrical constructions. The process we have

described may be illustrated by various graphical methods due to

Professor Lamb<12
> <*>.

Construct a curve showing the relation between Vt and A, the

wave-length, as in Fig. 7. Along the axis of Vt set off OQ equal to

any assigned value of x. Let ON be any assigned wave-length, NP
the corresponding ordinate. Then we have

PR PN- OQ
ItQ

~
ON

Vt-x

Q

Vt

Fig. 7.

Hence the phase at position x at time t of an elementary wave-

train K is proportional to the gradient of the line QP. The phase will

be stationary in value if QP is a tangent to the curve, and the pre-

dominant wave-lengths will then be given by the abscissae of the points

of contact of tangents from Q. For all such values the group velocity

U has the assigned value xjt.

As an example consider deep-water waves for which

The Vt
y
\ curve is a parabola, to which only one tangent can be

drawn (apart from QO). We see from Fig. 8 that for a given instant,

increasing values of x give continually larger values for the pre-

dominant wave-length.
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Another example is for waves on water when both gravity and

capillarity are taken into account; then

,

The form of the curve is

shown in Fig. 9. In this case U
has a minimum value, say UQ .

It follows that if OQ<l7<>t no

tangent, apart from the axis OQ,
can be drawn to the curve and for

such values of x there is no pre-

dominant group. If

there are two possible tangents to

the curve ; consequently for any position in advance of the point

there are two predominant groups superposed.

Fig. 9.

A graph can be drawn which gives some idea of the relative

importance of the predominant wave-length at any position x at time

/. Draw the curve corresponding to the relation between * Vt and *,

as in Fig. 10. Draw a line OA whose gradient in these coordinates is

the assigned value of x.
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For any particular wave-train, for instance with a value of * given

by ON, the phase i<Vt-Kx is equal to PQ, the difference of the

ordinates of the corresponding points on the carve and on the line OA.

The phase is stationary when the tangent to the curve is parallel

to the line OA, that is when

-X.

Further the amplitude of the predominant group depends upon the

effective range of values of K for which the phase is sensibly constant.

Thus the disturbance will be the more intense, the greater the vertical

Fig. 10.

chord of curvature of the curve, a statement which is consistent with

the occurrence of the factor tdU/d*, or cP (K Vt)ld^, in the denominator

of the group formula (26).

In connection with these graphical methods it has been suggested

by Professor Lamb (22) that group methods may be applicable to the

theory of earthquake waves and in interpreting seismometric records.

A theoretical study of the effects due to a limited initial disturbance

near the surface of an elastic body such as the Earth, shows that there

are three main stages in the disturbance as it reaches a distant point

on the Earth's surface. The disturbance begins after an interval

corresponding to the propagation of a wave of irrotational dilatation
;
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a second stage begins later with the arrival of a wave of equi-

voluminal distortion; and finally the disturbance takes the form of

surface waves which have slower velocities than the other two types.

It is in the third stage where certain observed effects might be

attributed to dispersion, that is to a variation of the velocity of the

surface waves with their periods ;
such theories might be tested by

group methods.

For instance, the period of the waves which pass any particular

point will become longer or shorter as time goes on, according as the

graph of the relation between V and A is concave or convex upwards :

a result which can be inferred from the graphs or can be proved

analytically.

12. The Group method for any limited initial dis-

turbance. We have so far assumed a very special kind of limited

initial condition, an intense displacement concentrated at the origin or

similarly an intense distribution of velocity. It is necessary to see

how far the same methods can be extended to less artificial conditions.

We should have, more generally, to consider the integral

K*)co*K(x-Vt)dK ............... (27),

/CO

where <(*)- I / (w) cos K<D <#*,
J-oo

assuming for simplicity an initial distribution symmetrical with respect

bo the origin. We can also take advantage of the introduction of the

amplitude factor < (*) by supposing it to be such that the integral (27)

is convergent.

The general argument of the Kelvin method, stated in 10, has

considerable affinity with the theoretical explanation of diffraction and

other optical phenomena in terms of the mutual interference of large

numbers of elementary wave-trains ; in fact a predominant point is a

sort of travelling focus, the introduction of a phase difference ?r/4 in

the expression (26) being analogous to the abrupt change of phase

along an optical ray in passing through a focus.

In applying the same method to the more general form (27) we
should expect the group evaluation to be valid only in regions in which

we can suppose the amplitude factor < (K) to be sensibly constant, the

cosine factor on the other hand varying rapidly. On this hypothesis
the prominent part of the integral (27) for given x and t would, as
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before, be contained within a small range of values of * for which the

phase is stationary and the effects of the elements cumulative
;
thus

the amplitude of the component trains of the predominant group

would occur simply as a factor and we should have

In this way the trains for which < (*) is a maximum show promi-

nently in the formula
;
in fact its validity is limited to the neighbour-

hood of the maxima. In the cases we shall examine, the effect is due

to a limited initial disturbance and the salient features are due to the

circumstance that <
(K) has well-defined maxima

;
thus the prominent

part of the disturbance can be expressed in the form of simple groups

associated with the neighbourhood of each maximum.

The limitations of this approximation can only be studied with

advantage when dealing with some definite case in an assigned medium ;

in some of the examples given in the next Chapter we have the

advantage of being able to compare the results with those that have

been obtained previously by other methods.

As an example of a class of problem which awaits further detailed

study, we may notice a difficulty which arises when dealing with

surface waves on water. A first approximation to the value of (27)

for points at a sufficient distance from a limited initial disturbance

would be to make <j> (*) a constant factor, equal to the total integral

displacement, involving in this case t being not too large ;
the integral

(27) would then equal (22) multiplied by a constant factor and it

could be given the corresponding asymptotic group value from (26),

implying t being not too small. There would thus be doubt as to the

existence of a range of values of t satisfying both conditions to a

reasonable degree. It may be noted that the group value given

above, as in (28), corresponds to a second approximation ;
in the

present case of water waves comparison may be made with the well-

known approximations of Cauchy and Poisson (24)
. We proceed to

illustrate the group method by examining certain definite cases.



CHAPTER IV

ILLUSTRATIONS OF GROUP ANALYSIS

13. Medium with constant group velocity. Particular

cases may be devised in which the group analysis takes a special form.

If dU/dK is zero for all values of K, there is no separation of pre-

dominant groups as time goes on
;

for all the groups move forward

with the same group velocity. Suppose in the first place that V is

constant
;

then U has also the same constant value, say c. The

equation x - ct = indicates
"
predominance

"
for every value of K . We

might illustrate this graphically by the construction we have had

Fig. 11.

previously. The curve OAP represents the Vt, A curve for waves on

water of depth h, in which case

When OQ =
c, the tangent QP is horizontal and shows predominance

of large wave-lengths. As h is made larger, the curve takes forms

like OBP in which more of the curve is in practical contact with QP.
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Finally in the limit when V is constant, we should have QP itself as

the curve. Of course in this case there are direct methods of evaluating

the integrals ;
one knows that any disturbance is propagated with

constant velocity without change of form.

The most general case for which dUld* is zero is given by

V=a +
^;

U=a ....................... (29),

where #, b are constants.

Here again we have predominance of every value of K, and the

group method fails to evaluate the integral as is obvious from the

method used to obtain (26) when we remember that dU\d* and all

higher derivatives are zero. In this case the Vt, A curve would be a

straight line inclined to the axis of A. To follow the propagation
of a disturbance we have to fall back upon the original integrals. For

an initial distribution

we have
1 ( f

/ (#)
= -

I dK /(<)) cos K (x
-

co) d<*>.
T JQ J -oo

Write also

]T o / oo

< (#)
-

I dK I J (o>) sin K (x
-

o>) dw.
IT J J -oo

Then for the disturbance at any subsequent time we have

1 f /"

=z~ I dK I / (
27T J J -oo

/-co

^
I /
J -oo

cos

cos

Consider the first integral, representing a disturbance travelling in

the positive direction of Ox
;
we have

x at} sin bt.

After equal intervals of time 2ir/b9
the initial form /(#) is exactly

repeated and is displaced forward a distance 2Tra/b. But at inter-

mediate times there is no simple displacement, and the form may be

quite different. At a time ir/b we have y = -
/(#), indicating a

complete reversal.
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An example which admits of complete solution has been given

by Professor Schuster (25)
,
who graphed the form at various instants. If

it can be shown that

t-0 i'TT/b

Fig. 12.

t-zvlb

If a disturbance travelling in the positive direction is given by

y =/(#) initially, we have at subsequent times

__
a2 cos bt a(x at) sin bt , .

y "(^^)aTi*
+
"7^^)r^^

...............

The graphs in Fig. 12 illustrate the change in shape of the wave as

it goes through a complete cycle.

14. Flexural waves on a rod. When developing the phase
of an elementary train in three terms of a Taylor series in (24), we

remarked that the expression would be exact if the remaining terms

were zero
;
in this case by putting d*U/'dK* zero we obtain

ir a
2V = - + b + CK,

K

where , b, c are constants.

It follows that the group evaluation holds without being limited to

large values of t.

An example is supplied by the ordinary theory of transverse

vibrations of an elastic rod
;

with suitable units the equation of

motion is

Assuming as a solution an infinite regular train cos * (#- Vt} this

gives
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The group velocity for any wave-length is twice the phase velocity.

Consider the case of an infinite intense displacement concentrated at

the origin initially ;
for subsequent times

t = -
I cos KX cos KVtdK (31).

^Jo

sin + (32).

From (26) the group evaluation in this case is

with K = afot.

Thus we obtain

But the integral (31) has a known exact solution
;
we have in fact

1 /* 00 / /Y\

y = ~
I

cos KX cos *?t dK~ ^ (nt}~^ sin f
- +

--) ...(33).

We have accordingly in this illustration a case in which the group
method gives a result which is exact for all times. It is of interest to

see how the more general case works out. Suppose the conditions are

The solution is given by

J Too /

y-~\ d* I /(<*>) cos *(# >) cos K P
r

do> ...... (34).
^JO J -oo

Remembering that *F is equal to /c
2
,
and changing the order of

integration, an exact solution can be obtained by known methods in

the form

y= Wsm^^ ............ (35).
2 JirtJ-o* U 4# J

For comparison apply the group method of (28) to this case.

We should express (34) in a form representing positive and negative

waves. For x and t positive, predominant groups will arise only from

the former, so that we are only concerned with

1 C 1 f

y = I
</> (K) cos K (x

-
Vf] d* + r I

i/r (K) sin K
(a? F^) C?K,

^ 7r
y o ^^7 o

/*00 f 00

where ^W -
I /(w) cos ^o> (/w

; $ (K)
=

/ /(o>) sin KW rfo>.

y-oo y-ao
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Hence in the manner of (28) we obtain

> ..................... (36).
4 4 2*/

This differs from the exact form by omitting a term o>
2

/4 in the

argument of the sine. Any detailed study of the approximation would

need a specification of the function / (<o), but we see how the result

is of use when the initial disturbance is limited in extent, that is

when / (w) is zero everywhere except within a limited range of the

variable. The condition involved is that x should be large compared
with any effective value of o> in the integration; thus the group

method must only be applied for positions at some considerable

distance from the confines of the initial disturbance, and after the

lapse of a sufficient interval of time.

15. Water waves due to concentrated line displace*
ment. In taking illustrations from the motion of water waves we are

dealing with problems of more practical interest than those we have

examined hitherto
;
we have moreover the advantage of being able to

compare results obtained by various methods in the numerous researches

in this region.

We begin with the somewhat artificial conception of an intense

initial displacement concentrated at the origin. This was the case

given originally by Lord Kelvin to show the agreement of his group
method with earlier results of Cauchy, and we may set aside meantime

the question of convergence of the integral.

We have as before

If 00 If 00

y = v I COSK(O?- Vt)d*+ -
1 cos*(# + Vt} d* ...(37),

2ir J Q ITTJ

with V
There are symmetrical groups of waves proceeding in the two

directions from the origin. For x and t positive the chief group comes

from the first integral, and the predominant wave-length is given by

K==
i?'

Applying the formula (26) we obtain

Q t /(ft* 7T\

y =
*

COS (7 ).o i^t \4# 4/
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At any considerable distance from the origin this indicates

oscillations succeeding each other with continually increasing amplitude
and frequency ; also if we follow a group of waves with a given wave-

length the amplitude varies inversely as $
9
or inversely as or.

The degree of approximation of (38) can be estimated by com-

parison with Poisson's result for gt
2

/2% large, involving a semi-con-

vergent expansion

<fa (qtf \ I (I 1.3.5 1.3.5.7.9
7/

'
< (qtf \ I (I 1.3.5 1.3.= '

(^oi (
" - TT

\ -__ -' -- ____ 4-

* w 4/ ** ( <* ^

where

Another comparison is of interest in connecting the group method
with Fresnel's treatment of diffraction. It can be shown that the

solution (37) is equivalent to an exact expression

du, f
w

, du i f
w

n
du

s-i-w I cos *u +sin-oU> I sin ^u -,~-
Jo

"
x/M

-
Jo Jll

qn ( at'
2

-
'- cos 7

4.r

'

2 r**'
, , . at? r4*'

.
, 7 )

cos 'trav + sin
.

sin^r dv y .

.r j o 4r J o
j

Hence ?/ is given by the real part of

where

i . at*

(ft
*
4i

s ---

f
S

-iv* 7 /orA
,
e dv (39),

.' o

If we draw Cornu's spiral, as in Fig. 13, with OA = \Ar and

^-45 and if ^ is the arc from the origin up to a point (r, 0) on

the curve, we have

re
i& [* -iv* ,- I e dv.

Jo

The exact value of y at any time and position is accordingly

given by

(40),

where r and are obtained for an assigned value of s equal to

When s is large, r and oscillate more and more closely about their

H. . 3
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final limiting values of \Ar and T respectively. It should be noticed

that the above results have been obtained for a very special type of

initial disturbance and there are certain limitations in their direct

application to cases of an initial displacement of breadth which is finite

though small. If y =/ (x) gives the initial form we should have in place

of (37) similar integrals each containing a factor <f> (*) where

/oo

(*)
-

I /(0
J -00

In putting <(*) equal to a constant, one introduces, as Cauchy

showed, the limitation that #
2

//4#
2 should be very small, / being the

effective breadth of the initial disturbance. Thus if one attempts to

apply (38) directly in cases where / has a small finite value, this

question has been left unresolved : whether for a given position there

is an appreciable range of time for which gt*l/4x~ is very small and

g(*lx is very large. It is more satisfactory to consider directly some

cases.

Fig. 13.

16. Water waves from initial displacement of finite

breadth. Let the initial conditions be

Car
for t = -(41),
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where a is supposed small, so that 2a is the effective breadth of the

initial displacement. Then we have

I r<*> rao

= -
I dK I

TJoJ-a
cos KX cos * Vt cos *a> du ...... (42).^ /

Before applying the group method we recall some results obtained

by Professor Burnside (23)
, who investigated the solution in detail under

the condition a/x a small quantity. Retaining all terms of equal order

it was found that

[Air
Co.

I r- )
e

I
*" sin

( p + 7 1
-

x \4#7 L \ 47

1.3.5

where p = ^2

^/4 (#*
2 + a2

) (43).

From this it follows that when gtfl^x is a moderately large quantity,

y is of the order a/x ;
but when gf/4x is very large and of the order of

x/a, then y is of the order *Jajx. For such values of t all the terms of

the semi-convergent series included in (43) can be omitted. Further

when #
2

/4# is of the order #2

/a
2
, we may substitute gfjkx for p.

Hence we obtain for the displacement at a given place, valid for the

range of time during which its magnitude is comparable with its

maximum value,

- . ,
.

) ^ te sin (^-+-7) ............ (44).x \xj \4# 4/
v x

To apply the group method to (42) we consider the part involving

positive waves, as we are concerned with positive values of x, and we

have

(45).

1 (

y = I ^ 00 cos K (^
-

LTTh

and was obtained with the assumption that <t> (
K
o) wa a slowly varying

quantity compared with the cosine factor
;
in other words, the result

22
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is to be interpreted in terms of simple groups associated with the

maxima of the amplitude factor. Using the relations

and evaluating (46) we obtain precisely the expression (44). We can

also verify that the sine term varies rapidly compared with the other

factors in (44), so that the maximum value of the latter gives the

position of maximum displacement ; one obtains for the maximum

x

This must be the group velocity for the predominant wave-length near

the maximum
;
hence the value of this wave-length is 4. Another

case in which we recover simply results obtained by other methods

by Burnside is when the initial displacement has a constant value A
for a range c on either side of the origin and is zero elsewhere.

Then

(47) .

With the same argument as before we consider the value of y at a

point as due to the most important of a succession of simple groups ;

and we can obtain from the previous results an expression for the

group which is valid at least in the vicinity of the travelling maxima
of the disturbance. We have

Here we have a succession of maxima given by those of

that is at times given by tan -
20, where =

gt?cl4x*. The maxima
as they pass any point diminish continually in magnitude with the

time, and each is propagated with uniform velocity equal to the group
velocity of the predominant wave-length in its vicinity.

An interesting graphical illustration can be obtained from curves

given by Lord Kelvin (19)

representing his solution for a particular form
of limited disturbance ; the numerical study from the point of view of

group velocity is due to Green <). The diagrams of Fig. 14 show the

actual calculated form of the water surface initially and at the times

indicated ; the units are such that 2/%/ir is the phase velocity of an
infinite train of simple harmonic waves of wave-length 2. The
zero-points are^numbered in the order in which they occur in time.
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Assume that we may take twice the distance between any two con-

secutive zeros as an estimate of the predominant wave-length in the

neighbourhood of the maximum between them. Then we can calculate

the corresponding group velocity, and multiplying it by the time we
find where the maximum ought to be according to group theory.

Position of Maximum

Time

W^r

VTT

The table shows the result of such a comparison. One sees that

the agreement becomes very good as time goes on and as the change
of wave-length between zeros is small.

17. Finite train of simple water waves. Another in-

teresting example is the case of an initial displacement consisting of a

limited train of harmonic waves. If /(#) is symmetrical with respect
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to the origin and is zero except for a range of (%n + ) wave-lengths

within which it is cos K'#, we have

<*<VU2 f
(2n* i)7r/lt

'

'

K j - g
' cos \(2n -f ) TTK/K'} ,

' \ / I ..' 2 ...2 V /
JO K K

Hence we have the surface elevation y, of which we write down only

the part necessary for x positive,

K' [ cos (2n + 1) TTK/K . T7
.

N
.

, N
7/="l ""72 4" COS *

(X " ^)^ (5 )'

If w is very large the main feature consists of the component waves

round the value K'
;
but in general a series of subsidiary components

appears, whose effects may be appreciable. The component waves are

cumulative for values of x and t such that K =
</

2

/4#
2

;
and the

prominent effect at time t, of any group of parameter *, will be at

localities where K has the value K' or else a value belonging to one of

the subsidiary maxima. Evaluating in the usual way we find

cos

We can obtain the prominent travelling groups above referred to by

calculating the maxima of the amplitude factor

The form of this function is shown in Fig. 15, which was obtained

by plotting the curve

T 9
,

i =r^ co8
2'

rT
'

where T is proportional to t, and further, r - 1 corresponds to K = K'.

The curve represents the variation of the displacement at a given

point with the time, neglecting the rapid local variations due to the

last cosine factor in (51) ;
it shows the grouped propagation of an

initial displacement consisting of 4i complete wave-lengths of a cosine

wave of wave-length 2ir/K or X'.

The main undulatory disturbance appears as a simple group around

the predominant wave-length X' moving forward with the corresponding

group velocity ^ V. But in advance of this main group of undulations

there are two or three subsidiary groups of sensible magnitude with

wave-lengths in the neighbourhood of |X', |X',
X' and with correspond-

ing group velocities. Thus in advance of the main group we have
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slighter groups of larger wave-lengths moving with group velocities

which may be larger than V. In the rear of the main group we have also

a series of alternating groups, following each other much more quickly

and with their wave-lengths and velocities less separated out than in

the front of the main group. Hence the disturbance in the rear,

especially at not very great distances from the origin, may be expected

Fig. 15.

to consist of small, more irregular, motion resulting from the super-

position of this latter system of groups ;
thus there should be a more

distinctive rear of disturbance moving with velocity \V. These

inferences may be compared with some results given by Lord Kelvin (20)
.

Starting from a solution of the equations for an initial elevation in the

form of a single crest, the results were combined graphically so as to

show in a series of curves the propagation of an initial disturbance

consisting of five crests and four hollows of approximately sinusoidal



40 FINITE TRAIN OF SIMPLE WATER WAVES [CH.

shape; it is of interest to notice his remarks on the diagrams.
*'

Immediately after the water is left free, the disturbance begins

analysing itself into two groups of waves, seen travelling in contrary

directions from the middle line of the diagram. The perceptible fronts

of these two groups extend rightwards and leftwards from the end of

the initial static group far beyond the hypothetical fronts, supposed to

travel at half the wave-velocity, which (according to the dynamics of

Osborne Reynolds and Rayleigh, in their important and interesting

consideration of the work required to feed a uniform procession of

water-waves) would be the actual fronts if the free groups remained

uniform. How far this If is from being realised is illustrated by the

diagrams, which show a great extension outwards in each direction far

beyond distances travelled at half the wave-velocity. While there is

this great extension of the fronts outward from the middle, we see that

the two groups, after emergence from coexistence in the middle, travel

with their rears leaving a widening space between them of water not

perceptibly disturbed, but with very minute wavelets in ever augment-

ing number following slower and slower in the rear of each group.

The extreme perceptible rear travels at a speed closely corresponding

to the half wave-velocity.... Thus the perceptible front travels at a

speed actually higher than . the wave-velocity, and this perceptible

front becomes more and more important relatively to the whole group
with the advance of time/'

This extract will serve to emphasise the importance of strict

definition and use of the word *

group/ A simple group, of whatever

structure, has associated with it one definite velocity depending only

on the wave-length and the type of medium
;
but this is not the case

for an arbitrary limited disturbance, even if composed of harmonic

undulations, In certain cases, as in the present, we have found it

convenient to analyse such into its important elementary groups,

each with its definite group velocity ; only in special cases may the

disturbance be considered practically equivalent to one simple group.

18. Concentrated initial displacement on water of

finite depth. We choose the next example because it includes the

possibility of clU/d* being zero for a particular value of *.

For waves on water of depth h, arising from a concentrated line

displacement at the origin, we have as before

1 f 1 f

y = I cos K (x
-

Vt) dK + I cos
(*c

+ Vt) dK,** JO ATT JO
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with = (2tanh.
\K

1
sinh (52).

The relation x\t- U gives one real positive value of K and we can

obtain the corresponding group value in general from the formula (26).

But that expression, having dU/dK in the denominator of the ampli-

tude factor, fails if this quantity is zero. In the present case, we have

^=0- rW2~A- for K = O

We must then modify the group formula for times and places at

which a/t = ,j2<jhj the predominant wave-length at such being in-

finitely long. We return to the expansion of the phase in a Taylor

series and add another term so that

haveAccordingly for the predominant group in this case we

K (x - Vf) = KO (K
- VQ i) + 1 t (- \(K - K Y

The group value then becomes, under similar conditions as before,

ti ="
o^

= L{JlT\ * sin
I
rW cos ^& ~^

r rf.

-(53),

I a* }

provided the particular value * does not coincide with one of the

limits or OD
,
of the original integral ;

in that case we should take
i i <* /* . i i i i

KO

limits or oo
,
of the original integral

one-half of the above result.

In the present case

and the above formula gives for x - t \/%gh,
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Lord Rayleigh has obtained the same result from a somewhat

different point of view
;
he considers it as representing a sort of solitary

wave in advance of the Kelvin groups, its occurrence being due to

specially enhanced values of the original integral when x and t are so

related that the phase is approximately zero for small values of *. It is

in fact only a particular case of the group scheme, whose form is rather

unusual on account of special circumstances in the velocity function.

19. Travelling point impulse on the surface of water.
The formation of wave-patterns is a subject iif which we can use with

advantage the interference methods with which we are concerned.

To make the problem definite we shall consider a point source of

impulse acting down upon the surface of deep water. Let the axes of

x and y be in the undisturbed surface of the water, the axis of z

vertically upwards ;
write w for VV + #

2
,
and let p be the density of

the water. Let the initial data be symmetrical round the origin and

consist of an initial distribution of impulse given by f(vi), without

initial displacement. The consequent surface elevation is given by

i f
= I < (K) K Ft/o ( K(J*) sin (K Vt] KdK,

ffP Jo

rao

where <(*)=/ f(a)JQ (Ka)ada (55).
Jo

In general we may suppose the factor < (K) to be such that the above

integral is convergent; for illustrative purposes it is sufficient to con-

sider an initial concentrated point impulse for which we may take

<(*) equal to l/2ir ;
then

C = - JL
f

"
j9 (

KOT) K 7 sin fK Yt\ KdK
&ir(jp Jo

=
| ^ I K F COS (KTCT COS ^8) sin (K Ftf)

7T
gfp Jo Jo

IT

[
2

rf/8 f

*
K V {sin AC

(tcr
cos (3

-
Vt)

Jo Jo

-
-1

2ir
a

#> o o

- sin K (w cos j8 + Ftf)} K^K ......... (56).

Using the same group methods as before, we separate a real principal

group from the integral with respect to K representing diverging waves ;

it occurs round the value of K given by

^cos0 =cr:= Ig
t Y' K
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We then evaluate this group by the usual formula (26) and substitute

its value instead of the integral with respect to *
; thus we are left

with

sin
) (57).

To find the principal value of this integral we use the same method.

The important group of terms occurs when the phase of the sine factor

is stationary, that is for /? zero; since this is one of the limits of

the integral we take one-half of the result given by the group

formula, and obtain finally by this means the known approximate result

g#
sin -?- .(58).

Now let us suppose this impulse system to be moving along Ox with

uniform velocity c
;

let B be the position at time
,
A at any previous

time t
,
and suppose the system to have been moving for an infinitely

long time.

We have

ct,-, OB = ct;

COS a = (ct
-
x)fw.

Then in (56) we have to

substitute

{B7
2 - 2c (t

-
) COS a + c

3

( )
2

|^

for or,
- for t, and integrate

with respect to tQ from - GO to t

writing u for t we have
Fig. 16.

cos

I /- roo roo

^
==

I ^g / ^ I

KF[sin/c{c
2gpir JQ Jo Jo

- sin K {cos )S (w
2

'Zwcu cos a + c
2^2

)^ -f
T^w}]

We select the group round the value of * given by
K- 1 = 4 cos2

/? (w
2 - 2cMtr cos a -h c?u*)/gu

2
,

the chief group in respect to ft occurs at /3
=

0, and we obtain as before

>--_#
COS a

sn
- 2c?/37 COS a +
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Finally we choose the chief group or groups of terms in u from the

condition

............ (61).

Having found the values of u we could use the group formula again

and could investigate the amplitude of the resulting disturbance ;
but

for that purpose it would be more satisfactory to revert to the integral

in (55) with < (K) corresponding to a less artificial type of initial

impulse, for which the validity of the approximations could be examined

more closely. We shall not pursue this further but shall confine our

attention to the condition for the chief groups in a. It leads to

cV - Scutx cos a + 2w2 -

or cfi = i^{3 cos a (9 cos2 a -8) }
............... (62).

Fig. 17.

It is clear that each value of cu gives a position of the moving im-

pulse, at time u previously, for which the waves sent out reinforce each

other at the point (zsr, a) at the time t.

In the region where 9 cos
2 a < 8, both roots are imaginary ;

thus the

previous position is non-existent and there is no principal group for

the integral in u. Hence all the regular wave-pattern is contained

within two straight lines radiating from the point-impulse, each making

with the line of motion an angle cos" 1

2^2/3, or approximately 19 28'.

When 9 cos
2 a > 8, there are two different real roots for cu. Thus

there are two chief groups in the integral, corresponding to two regular

wave systems superposed on each other.

If MJ and #a are the two roots in z/, then for any point P within the
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two bounding radii the main disturbance consists of two parts : one

group sent out from A at time t^ previously, where OA =culy and

another group sent out from B at time u2 previously, with OS = cu2 .

Hence arise the two wave-systems, the transverse and diverging waves,

forming the well-known wave-pattern which accompanies a moving
pressure point.

20. Wave-patterns from a travelling point source. If

we wish to study the form of the wave-pattern only without estimating
the amplitude, the matter may be stated much more briefly. Consider

a point impulse moving with uniform velocity c over the surface of a

dispersive medium for which U and V are respectively the group

velocity and the wave velocity for

a wave-length STT/K.

Let the disturbance from the

impulse when in the neighbour-

hood of a point A combine so as

to produce waves * at P at the

present moment when the source

is at 0. Then the problem of

finding the possible persistent
x i u Fig. 18.

wave-systems which accompany
the moving source is contained simply in the conditions

33=75 'cos0=F .................. (63),

that is, in

w ~ \ , sif ......
(64)-

C (CU
- w COS )/(o7

2 - 2CMOT COS a -I- e
2M2

)*
= V '

The wave-pattern depends upon the character of the positive roots of

these equations for cu and *
; each such value of cu defines a wave-

system with wave front through P at right-angles to AP, and each

system can be expressed in the form

= jP(w, a) COS {K (V - %CUW COS a + cV)* + c} ...... (65),

with cu and K as functions of w and a.

Some simple examples occur when the medium is such that the

group velocity bears a constant ratio to the wave velocity, that is

when

/7=|O+1)F
with n independent of K.
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Then the equations (64) lead to a quadratic for cu

( 1
-

) cV + (n
-

3) cuw cos a + 2-sr
2 =

(66).

When n = we have the previous case of water-waves, with a double

pattern contained within two definite lines.

For capillary surface-waves n is 2. Then there is only one positive

root of the quadratic and it is real for all values of a
;
there is only one

wave system but it extends over the whole surface.

For flexural waves on a plate, n = 3. There is one system, extend-

ing over the whole surface, corresponding to the root cu = w.

In general, when u\ V is not constant, the equations (64) lead to

complicated wave-patterns. For example, for surface-waves under

gravity and capillarity combined, it may be shown that in certain

positions there are four wave-branches through each point.



CHAPTER V

ACTION OF A PRISM UPON WHITE LIGHT

21. White Light as an aggregate of pulses. It is

generally admitted that white light, from an incandescent solid, is not

composed of regular trains of waves of given periodicities, but is an

aggregate of a vast number of irregular disturbances or pulses. We
have to reconcile this view with the fact that a prism of dispersive

material analyses white light into a sequence of periodic waves more

or less homogeneous according to the resolving power of the prism.

We should require accordingly in the first place a theory of the action

of a prism upon a single concentrated pulse. Further, in white light we
have an immense number of such pulses and we should have to consider

whether there is any degree of coordination between them : to what

extent the Fourier element from an aggregate of pulses is affected by
the random distribution of phase of the components from separate

pulses. It appears that the regular wave represented by a Fourier

element from a random aggregate of similar pulses does not differ

appreciably from that due to a single pulse.

Our present aim is not so much to show the analytical equivalence

of an aggregate of pulses with trains of regular waves of all possible

frequencies, as to obtain an adequate picture of the mode of action of a

prism in effecting this resolution. If the former were the main object

there would possibly be no reason to go beyond the traditional method,
as Lord Rayleigh has remarked (:H)

; by Fourier analysis a pulse is

equivalent to a series of regular infinite waves, and problems can be

solved on this basis so long as we take for granted the dispersive

character of the medium which is specified by the relation of velocity

to wave-length.

On the other hand, if we press for an ultimate physical explanation
we must take into account the constitution of the medium. In that

case a large class of examples of dispersive action has no direct bearing
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on the present problem ;
we refer to the propagation of waves in

bodies of limited form, as in all such cases we are practically concerned

with surface effects : for example, surface-waves on water or elastic

bodies, or flexural waves on rods. In dealing with dispersive effects

in the body of a medium we appear to be forced ultimately to assume

periodicities of time or place inherent in the constitution of the medium.

However, without pursuing the physical analysis so far, we may
obtain valuable analogies from the method of groups and wave-patterns

developed in the previous chapters. Before doing so we may recall the

action of a grating upon a single pulse. It is easy to see in a general

manner how a grating produces periodicities in reflecting a pulse.

Let a thin plane impulse fall normally upon an ideal grating

consisting of narrow parallel strips, equally spaced and alternately

reflecting and non-reflecting. A lens 8 brings to a focus at F the

light reflected in any given direction 0.

It is clear that the pulses reflected from. the strips at AI, A^ A% ...,

reach F successively, separated by

equal intervals of time

where V is the velocity of the

pulses. Thus the grating trans-

forms the single incident pulse into

a periodic disturbance which more

closely resembles a homogeneous

simple wave of wave-length

^I 1 ^l 2 sin0,

the greater the number of reflecting

strips in the grating.

Compare this with the action of

the grating upon a simple homo-

geneous wave incident upon it from

the same direction as the pulse.

The reflected light is not altered in

periodicity but its amplitude de-

pends upon the direction in which it is observed
; according to the

theory of a simple grating the first principal maximum of amplitude
will be in the direction A^B^F of Fig. 19, provided the wave-length
of the incident train is equal to A lA 9 sm0J that is, provided it is

equal to the wave-length of the periodic disturbance into which the

single pulse is transformed by the grating.

Fig. 19.
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22. Prism with constant group velocity. Turn now to

the action of a prism on a thin plane pulse incident normally upon the

first face. To make the theory satisfactory we must choose a special

ideal substance for the prism such that the phase-velocity V for

wave-length A. is

(67).

We discussed this medium in 13
;

it has special properties because

the group velocity U is constant. A pulse is not propagated un-

changed in form in general, but the original form is repeated after

equal intervals of time 1/6 moved forward through equal distances

a/b ;
at intermediate positions it is reversed. There is accordingly a

special kind of periodicity about the motion.

Fig. 20.

The pulse is incident normally on the face A Q AiA 2 . Draw lines

AiBi, A^B2y parallel to the base of the prism and such that

AiB }

= alb ;
A 2B2

= 2a/6 ;
etc.

Regarding the points of the second face as new centres of disturbance,

we see that the pulse in its original form (as a crest) is emitted at the

points Bly BI, .... Consider the emergent pulses for any assigned

direction indicated by the angle <f> ;
the disturbance brought to a focus

F will have a certain periodicity and a certain equivalent wave-length
A which we have to determine. From the figure we obtain

B>M. =KMt =...-*-+ (68).'

Further there is a time-difference of lib for emergence of the pulse at

BI, #2, ...
; hence the wave-length X is given by

x c asind* /rt vx=
b~b^ne <69)'

H. 4
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where c is the velocity of disturbances in free space outside the prism.

Now apply the ordinary laws of refraction for regular waves of wave-

length X incident normally on the prism ;
if X' is the wave-length

inside the prism we have

~ =
;
V= a + b\' (70).A A

Further, being the angle of incidence, if <t> is the angle of refraction,

V
sin = sin ^ (71).

c

From the equations (70) and (71) we obtain for X the same value

as in (G9). We have then verified that for this medium if a telescope

be pointed towards the prism in any direction, the disturbance at the

focus has a periodicity depending upon the direction
;
and further, the

corresponding wave-length is exactly that of the train of regular waves

which would be brought to a focus there if incident on the prism

instead of the pulse.

This method is devised to show the analogy with the action of a

grating and is satisfactory in so far as the special medium is concerned.

It may be supposed to apply to any dispersive medium by considering

the group velocity, though variable with the wave-length, to be

practically constant within any assigned small range of wave-length.

But in that case we should be operating with a simple group and not

with a narrow pulse, and we have seen that in general the latter is

equivalent to a collection of simple groups.

23. Separation of pulse into groups. Consider a single

pulse incident normally on the face of a prism of any dispersive

substance. We may conceive the effective action in the medium as a

drawing out of the pulse into sequences of approximately homogeneous

wave-trains, the place where any predominant wave-length occurs

travelling out with corresponding group velocity U. When the

various wave-lengths have been sorted out appreciably, the amplitude

changes slowly in the time required for many simple oscillations.

Consequently as these wave-trains arrive at the second face of the

prism, they may be supposed to be in the main refracted according to

the ordinary law for regular waves.

An objection that may be urged is that a single unsupported pulse

is so enfeebled in the process of being spread over a finite range in the

dispersive medium that the emergent trains of waves would be of

inappreciable amplitude. That would depend largely upon the
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intensity and character of the original pulse, and upon the consequent
distribution of energy among its Fourier elements. A question which

arises in this connection is the different manner in which a prism
treats white light and Rontgen rays, assuming both to be composed
of aggregates of abrupt pulses ;

in the latter case there is no

appreciable refraction. The propagation of a discontinuous wave-front

will be treated more fully later. For light waves, it may be stated

generally that such an abrupt front in a dispersive medium is possible

and travels with the same velocity whatever the medium
;

the

analytical reason is that the wave-velocity function has a finite

limiting value for zero wave-length, thus the abrupt front is associated

with extremely short waves and moves always with the velocity of

light in free space. It appears then that in every case of pulses

incident upon a prism there is a certain amount of radiation which is

not refracted. The relative amount of energy associated with the

non-refracted front compared with that in the subsequent trains of

waves doubtless depends upon the character of the pulse, its intensity

and its effective breadth and degree of abruptness. Generally, and in

white light in particular, the non-refracted part is presumably very

minute, whereas one supposes the converse to be the case in Rontgen

rays.

We have assumed that the dispersive character of the medium is

specified completely by an assigned functional relation between velocity

and wave-length ;
but in practice, for instance in dispersion formulae

for light, the conditions under which the relation is obtained may not

hold for very small wave-lengths, so that our conclusions about short

waves may be subject to limitations on this account. Further, the

question whether the front of a pulse can be treated adequately as

abrupt or discontinuous depends ultimately upon the physical con-

stitution of the medium and is no doubt to be determined by its time

of duration compared with what Sir Joseph Larmor (35) has called the

time of optical relaxation of the dispersing medium.

24. Analogy with wave-pattern of moving source. If

we consider oblique incidence of a pulse upon a prism we can work out

a satisfactory analogy with the wave-pattern produced by a moving
source, following the method of Green (M)

.

Let a thin plane pulse moving with velocity c meet the face of

a prism at an angle 0. The point of contact P may be regarded as a

constant impressed source moving along the face of the prism with

42
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velocity v equal to c/sin0, considering a plane section as in the

diagram. In working out the wave-pattern in the dispersive medium,
as for example in 19, we suppose the source to have been moving for

a considerable time so that regular effects may be fully established.

In the present case if OA is the length of the face of the prism we

Fig. 21.

shall have minor irregularities at the beginning and end of the process,
but we may ignore these in comparison with the main regular features.

If, as in 20, the disturbances from the impulse when in the

neighbourhood of a point P combine to produce waves of wave-length
2ir/*' at a point K at the present moment when the impulse is at 0,
then to determine the persistent wave systems which accompany the
source we have

0'= V
(72),

where V is the phase velocity and U the group velocity of waves K in

the prism.

If t is the time the source takes in moving from P to these may
be written

(r*
- %vtr cos a + v2

t?}^
= Ut

)

_ > (73),
y {vt r cos a) (r

2 2rr cos a + tr^
2
)

~ T^ \

where OR = r ; 7?OP = a.

The wave-pattern depends upon the positive roots for vt and *' given
by these equations ;

each root of vt defines a wave system with wave-
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front through R at right angles to PR and each system can be

expressed in the form

y = F(r, a) cos {*' (r
- 2vtr cos a + -y

2

)^
+

c} (74),

where vt and *' are functions of r and a given by the equations (73).

The lines of crests are given in polar coordinates (r, a) by

K
f

(^-2vtrcosa + v2

trf + = (2n + I)TT (75).

Further, the equations (73) are homogeneous in r and t
;
thus the

line OR cuts successive lines of crests at the same angle, at places

where K' has the same value, that is OR is the locus of points at which

a given wave-length is to be found. A different value of a would give

the locus of some other corresponding wave-length. Also the direction

of motion of these crests, placed in echelon along OR, is in a direction

parallel to PR.
When the trace of the pulse has passed from A to we have in

the prism sets of wave-crests, the diagram indicating those associated

with an assigned wave-length.

The line PN being normal to AO, the angles and < correspond

to the angles of incidence and refraction, respectively, for the front

face ;
we have from (72)

v cos & v sin < = V.

V V
Hence sin<^-~ = sin0 (76).v c

^ '

Since V is the wave velocity of waves of length 2?r//c in the prism,

the ordinary law of refraction holds for these crests in echelon, just as

if they were regular homogeneous waves.

Now follow this train of crests in its motion, till it is clear of the

prism. Let AB be the greatest length traversed in the prism, then we
write

AB = thickness of base of prism - T.

Draw ON perpendicular to AB, and let t be the time for the trace

of the pulse to move from A to 0. The length of the train in the

direction of its motion

= MN=AN-AM=vt*in<l>- Ut = (V-U)t (77).

The rear M of the group advances through the prism with the

group velocity U and takes a further time t' to reach B, where

, BM T-AM T-Ut
t = __ __ . _... -_ __
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Iii the same time the front of the group of waves advances from

in free space in a direction OL which is given by the ordinary law of

refraction, just as on entering the prism ;
for we are dealing with the

emergence of regular trains of waves although arranged in echelon.

Further, the point L reached by the front of the train is given by

..................... (79).

It follows that after the rear of the group has emerged at 7?, the

crests are all arranged in echelon along BL and are all parallel to a

line BK which is drawn perpendicular to OL. Further the wave-

length X along BL corresponds in the ordinary way with the value

2ir/K' inside the prism. Thus BL is the locus of points where a wave-

length X is to be observed, just as if the crests were ordinary regular

waves proceeding in the direction OL except that their formation and

their finite number limits their approach to homogeneity.

From the law of refraction we have

Therefore the length of the train on emergence

T- [Tt T ~ Vt

But p> being the refractive index and X the wave-length outside

the prism we have

c _ c , dp

.

*

. Length of train on emergence ~ - 7
7

X
(80).

Conse(]iiently the number of wave-lengths after emergence is

agreeing with the ordinary result for the resolving power of a prism.

We conclude that the analogy of a travelling source gives a working

idea of the action of a prism. A reservation might be made for

regions of selective or anomalous dispersion ; on certain theories such

regions might correspond to gaps in the wave system, the velocity V
having imaginary or complex values as a function of *.



CHAPTER VI

THE FLOW OF ENERGY

25. Energy and group velocity. We have hitherto ignored

entirely one important aspect of group velocity, its connection with the

rate of flow of energy. It is impossible to treat such questions

adequately without specifying the dynamical or physical properties

of the medium, but we may obtain a broad idea of the matter with the

help of one or two assumptions ;
then we can proceed to greater detail

later. In dealing with the fluctuations of a vector ?/, a function of x
and t, assume that the density of energy at any position and time is

proportional to y
2

. If the disturbance forms a simple group of ad-

vancing waves we have
/"*( + e

y = I CK COS {K (x
-
Vi)

-
a} 6?K,

^*o

with small.

Further we have seen how, under certain conditions, this is

approximately equivalent to

y=f(x-U*t) cos {K, (/7
-

Fo) t} + F(x- tfoO sin K(#o- F )*}.

where we may regard the functions/ and F as slowly varying amplitude
factors compared with the cosine- and sine-factors. We square y and

take the mean value over a time which includes many oscillations of

the latter quantities without / and F altering appreciably ;
so we

obtain

Mean energy density x H!/0~ U*t)}*+{F(x- f/oOl
2
] .-(81).

Hence the mean energy density is a function of x UQ ty
and

suggests the possibility of regarding energy as being transmitted on

the average with the group velocity (7Q .

Or again if we consider the initial concentrated displacement of

which we have had various examples, the energy associated with each

small range of wave-length is initially concentrated at the origin ;
at

later times the same total amount appears in the neighbourhood of a

point which has moved out with the corresponding group velocity and

is spread out over an increasing range of the medium as time goes on.
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26. Infinite regular wave-train. If we apply a similar

argument to the ideal case of an absolutely regular, and therefore

infinite, train of simple waves, the mean energy density is constant.

On the other hand, consider the work done at any point, say the

origin ; for waves advancing in the positive direction, without dissipa-

tion, there must necessarily be an increase by an equal amount in the

total energy on the positive side of the origin.

Hence we in fact imagine some appreciable front of the waves,

though at an immense distance, advancing with some corresponding

group velocity ;
or what is equivalent, we imagine a sink at infinity

which absorbs energy at the required rate. In other words, in dealing

with the infinite regular train in this matter, as in others, we think of

it as a limiting case of a simple group. The connection between rate

of work done at any point and the group velocity may easily be

obtained by direct calculation in any specified medium with an infinite

train, but in order to resolve the mental difficulty suggested we

remind ourselves that we are dealing with a limiting case of a group.

The same kind of difficulty is referred to by Lord Rayleigh
(5) in his

study of energy and group velocity ;
he asks why the comparison of

energies should introduce the consideration of variation of wave-length,

and gives a proof in which the increment of wave-length is imaginary.

The theorem is well-known but it illustrates this point of view so

clearly that we repeat it here briefly.

Consider a dynamical medium, composed of small particles o^

mass m. Introduce a small frictional force hmv such that the motion

which in the absence of friction would be given by cos (nt
-

*#) is now

e~*x cos(nt- KX\ to first order in k. Assume that energy is pro-

portional to square of amplitude ;
then the ratio of the total energy

/oo
er^xdx

o

to 1 - 1/2/i. Also the energy transmitted through the origin in unit

time must equal the energy dissipated in unit time in the range of

x positive ; and the latter is equal to h times the total energy in the

same range. Hence

Energy_transmitted through origin in unit time
__

h

Energy density at origin

~
2/x

'

The argument is completed by noticing that the effect of introducing
friction is to replace <P/3t? in the differential equation by <P/dt? +

hence it is shown that, to first powers of A, /* is equal to

Thus A/2/*
= dn/dk = U, the group velocity. Accordingly, in time
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averages, the energy transmitted per unit time through the origin

is equal to the energy in a length U of the medium. The method

adopted would lose its meaning if applied directly to an infinite

regular train
;

in fact the theorem is derived by considering what is

equivalent to a simple group, a wave form with slowly varying amplitude.

The infinite, regular train of waves is deduced as a limiting case.

The first direct calculation for infinite simple waves was made by
Osborne Reynolds (4) for waves on deep water, and a similar calculation

was made for water of constant finite depth by Lord Kayleigh. The

same method can be followed in any case in which the dynamical

properties of the medium are known. One can calculate the average
rate at which work is being done by the forces acting across any

imagined plane at right angles to the direction of propagation of the

waves
;

in every case it is found that the average work in unit time is

equal to the average energy in a length U of the medium, provided
there are no impressed external forces which supply or abstract energy.

27. Equation of continuity for energy. Let E be the

total energy of a dynamical system. We say that the energy can be

localised if we can express E in the form

where dFis an element of volume, and e depends upon the condition

of each element and may be called the density of energy at each point.

Farther, consider the rate of change of energy contained within

a closed surface $; if we are able to express this in the form of a

surface integral over S, that is if

.................. (82),

where fn is the normal component of a vector /, then we say there is

a current of energy at each point given in magnitude and direction by
the vector/. The differential form of this equation is

(83),

or in fact we have the ordinary equation of continuity

* ?. + 4- = o ..................... (84),
dt dx ty %Z ^ '

applied to energy and its flow.

Of course in both these definitions, of e and of/, there is room for

ambiguity ;
for example we could add to any solution for / a vector
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whose divergence is zero without affecting the system as a whole.

However there are generally other considerations in any given case

which decide the particular solutions we adopt as the real distribution

of energy or the real current. In physical dimensions //# is a velocity ;

hence the components of the rate of flow of energy at any point are

f*le9 fi/le > f*/e - I11 this manner (38) we may study generally the flow of

energy in the motion of fluids or elastic solids in ordinary non-dispersive

cases.

We shall consider here some simple illustrations in one-dimensional

problems involving dispersion.

28. Vibrations of string with dispersion. In the first

instance consider the simple elastic medium specified by a stretched

string ;
for transverse vibrations we have

Hence if we consider a length of the string from x to x^ we have,

omitting a step in the reduction,

a (x
t rx, a /

tydy\ ,

edx = -
/
~

(
-P f-

- 'M dx.
vt JXl Jj- l

ex \ OX ut /

The rate of flow of energy along the string is given by

U =-P%*I*

The numerator, of course, expresses simply the rate of work of the

tension of the string at any point. For simple harmonic waves and

for mean time values we have f7= *J(P/p).

We may obtain a dispersive medium by supposing that each

element of the string is attracted to its equilibrium position by a force

proportional to the displacement. Then

and the differential equation of motion is

&y _ <Py

Making the same reduction we obtain
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Therefore the rate of flow of energy is

U=-P^le (88).OX tit I

Assuming a solution y = cos (nt *x] and using the relation

pri
2 = P?-h,

we find for mean values

U = KP/np - dn/dK = group velocity (89).

The difference between equations (86) and (88) for the two cases

is interesting. The introduction of a natural period for each particle

of the string affects the density of energy but does not alter the rate

at which work is done across any section. In the limit in the second

case with P zero we should have no transfer of energy, each particle

oscillating independently ;
other examples of this nature have been

specified by Lord Kayleigh
(:37)

, but, as he remarks, they can hardly be

regarded as examples of continuous media.

29. Sellmeier's model of dispersion. It is possibly open
to question whether the previous case should not be considered as the

limit of two interacting media, vibrating particles with their natural

period connected by stretches of uniform string. This idea appears
to be suggested in a remark by Prof. Poynting (40) on Sellmeier's model

of dispersion, that possibly the connection between energy flow and

group velocity would not hold in this case as we might regard the

vibrating particles as outside the medium and so supplying energy to,

or abstracting it from, the wave in its progress. However this may be

in an ultimate analysis, we can work out Sellmeier's model by the

present method, treating it as a single medium whose state is specified

by two coordinates at each point. The Maxwell-Sellmeier model is

a dynamical illustration of the interaction between matter and aether.

Each atom of matter is represented by a single massive particle

supported symmetrically by springs from the inner surface of a mass-

less spherical shell. If the shell were fixed, the particle would execute

simple harmonic vibrations about the centre with some natural

frequency n<>. The outer surface of the shell is in contact with, and

attached to, the aether at all points. Further, an immense number

of such atoms is supposed to be embedded in unit volume of the

composite medium made up of atoms and aether in this manner.

Let rj be the displacement of the aether at each point. Suppose
that the potential energy of strain is ^Etyfixf, where E\& an elastic
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constant ;
and further, that the kinetic energy is \p (<V9

2
>
where

p is the density of the aether. Let a- be the mass of the atomic

particles in unit volume, and let y + be the total displacement of an

atomic particle at any position x at time t. From the above specifica-

tion it follows that the potential energy of the atomic particles per unit

volume is *<n2
()

2 2
,
and their kinetic energy

KM;-
Thus we can write down the density e of total energy of the

compound medium, and can derive therefrom the differential equations

of motion
;
we have

(90).

We obtain in this case as before

dt dx\ fix ;

Z7^Rate of flow of energy =
-E-j- -J/0 (91).

Assuming simple harmonic solutions

t]
= A cos (nt K.T) ;

B cos (nt /cr) ;

we have from the differential equations

n*A -
(w

a - w a

) 5 ;
;i
2
p -f

M

^~i = .Bic
2

(92).

Also the mean value of ?7

IpirA
2 + io- (/I + Bfn* + |-AV^l

a
-f- ^o-/?^

2
'

It can easily be verified that

Mean velocity of energy flow =

= -7- = group velocity ...(93).



VI] MEDIUM WITH GENERAL POTENTIAL ENERGY FUNCTION 61

30. Medium with general potential energy function.

Some of the cases we have examined and others may be put under

a rather more general form. We divide the energy function e into two

parts : a kinetic energy T of the form Jp (fy/d)
2 and a potential

energy W, In general W might be a function of y and its derivatives

with respect to x and t, limited by the condition that a simple

harmonic wave may be a possible state of motion. We shall simplify

the statement by assuming

For a solution y = cos (nt - *#), the mean values of the kinetic and

potential energies are equal ; hence

\l>ri
2 =

\ (a +
!
K2 -f a2 K

4 + . . .

) .................. (95),

^=^(i
+ 2 a

Ka ^ 3^3 +-0 ............... (96).

The differential equation of motion may be obtained from the

variational equation

8 f
1

dt \*\T- W)dx =
(97).

Jtl M
We write y for dy/da ; carrying out the variation in the usual

manner we obtain

a2

We have now to obtain the equation of continuity for the total

energy : we have

_~ p
~

dWdy'
dy

f

~ctf
dj/' "dt

a /dW%\ a /ajf ay ^ a^wr ^\
a^\a/ a*/ 8a?\6y" W fady" dtj

...............
^ ; *
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Hence the mean rate of flow of energy

_
dy' di ty" "fit

dn~-
! 2 ...)

=
-j-

pn
m

pn
'

CIK

= group velocity ............................................ (100).

This example includes the first two cases and also flexural waves

on a rod
;
the method could no doubt be extended by assuming more

general forms for the energy functions T and W.

31. Electromagnetic waves. The modern idea of a current

of energy received its main impetus from Poynting's theorem for

electromagnetic waves. We shall state it for plane waves in free space

and then consider its extension to dispersive media.

Consider plane polarised waves advancing along Ox with the electric

force E along Oy and the magnetic force H along Oz, all the quantities

being proportional to cos (pt
-

K&) ;
with the ordinary notation and

rational units, the equations are

cdt d,r
5

c ct dx

together with, for free space,

D^E and B = H ..................... (102),

leading in this case to

^/> = //;
P~B^KE ......... . ........ (103).c c

Further, the total energy $ is localised under the form

* = JE/>+ \HB ..................... (104).

From the above relations the equation of continuity becomes

^ r ~-

dt dt ot d%

Hence there is a flow of energy cEH in the direction of propagation
of the waves, and the mean rate of flow

cEH

Following the method of Abraham (41)
,
we may extend this to a more

neral type of medium which has dispersive properties.
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The equations (101) give in general

............... (.05).

We take this to be the energy equation ;
so that the density of energy

<t>
must be determined from

The character of the medium depends upon the relation between

D and E and between B and //. Suppose that D does not depend

only upon the instantaneous value of E, as in (102), but upon its

derivatives with respect to the time, and similarly for B and H.

Assume in fact that for a non-absorbing medium the relations can be

expressed in the series

yjs = #*E

For vibrations of frequency p we have, assuming convergency of

the series,

o o

Separate the energy density <f> into two parts, and write

Ht

Hence fa is obtained in the form
'
2

Taking mean values with respect to the time

............... (108),
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and similarly for the other part of the energy

-iysbvp*] ............ (109),

where (E, H} -
(X, AT) cos (pt

-
*x).

Also the general differential equations give

M p KC ., o__ = <C- = . K~
c
z =

jr p,.L KC pp.
J

Therefore

From the definition of e it can be verified that

with a similar expression for d^ldp. We substitute these in the ex-

pressions for fa and < 2 . Then we obtain finally

Mean rate of flow of energy = _

01 + 02

IcLM

d*

- group velocity .............................. (110).

We have accordingly the connection between energy flow and

group velocity for electromagnetic waves in a medium whose dispersion

formula is of the type
icV

wa - __. ~
power series in p

2
.

32. Electron theory and energy flow. Although, from the

calculation for Sellmeier's model and the previous case, the same

result may be inferred for a dispersion formula based on electronic

vibrations, it is of interest to work out the relation independently.
The medium is now a compound structure made up of free

aether together with N simple vibrators per unit volume
; each

vibrator is of mass TW, carries a charge 0, and can oscillate about a
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position of equilibrium with a natural frequency. The equation of

motion of one vibrator is

W+/* = *00 + J#tf) .................. (HI),

where E is the electric force in the train of light waves, and the right-

hand side of the equation gives the effective force on a vibrator. Also

the electromagnetic equations are now

Multiplying (112) by E, (113) by H, adding and then substituting

for E horn (111) we get the energy equation in the form

f- {A E* + IH* + INm? + N(f- \Ne>} ?} + ~
7 (cEH) =

ot QX

...... (114).

The density of energy is given, as we should expect, as the sum of

the energy of the aethereal electromagnetic field together with the

kinetic and potential energy of the vibrators
; the Poynting vector

retains its usual form cKH.

For plane waves we have

E sin (pt KX) ;
H - sin (pt KX) ;

-----
, sin (pt-Kx) (115).

Hence we have the dispersion formula

p* f J Ner mp
2

'

Consequently
dp / ( Nerp (f- \ Ne*) |

,

Finally, from the energy equation we have

Mean rate of energy flow - Mean ^^
\E*+Ul* + ^Nme+ \N(f- INe2^

= K(f / In*
I I I

~
j =group velocity (H7).

H. 5
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33. Natural radiation. Planck's theory of natural radiation

involves the effect of radiation upon a vibrator whose equation neces-

sarily includes a term to represent damping due to the emission of

energy by the vibrator
; dispersion is accompanied by some degree of

absorption. On this theory, Laue (28) has investigated the connection

between mean intensity of natural radiation and group velocity and

has shown that in general the energy is propagated with the group

velocity.

Exception must be made for regions of selective absorption ;
but

when the coefficient of absorption is large, simple group ideas are no

longer applicable nor in fact are the usual statistical conventions for

the mean intensity of natural radiation. Assuming that we could still

operate with a simple group in such a region, we should have the

possibility of negative group velocity.

Dynamical media have been devised with negative group velocity
(13

),

the variations of phase moving in the opposite direction from the

flow of energy ;
but it is improbable that the idea has much physical

bearing in the present connection.

Similar remarks apply to another suggestion regarding the spreading

of a pulse in a dispersive medium. The different wave-lengths become

sorted out, and when the process is fully developed we might imagine

the possibility of treating them as independent wave-trains
;
conse-

quently we should come into conflict with the second law of thermo-

dynamics in its application to radiation. Even if we admit these

assumptions, the difficulty is not of practical consequence, as before

any such stage was reached the intensity of the wave-trains would be

infinitesimal.



CHAPTEK VII

PROPAGATION OF WAVE-FRONTS WITH DISCONTINUITIES

34. Non-uniform convergence and discontinuity. In

interpreting the propagation of limited initial disturbances in terms of

regular waves or of simple groups, there arise certain paradoxes to

which attention has been called by various writers. For example, for

waves on water of constant finite depth h both the wave velocity and

the group velocity extend only over the finite range from zero to

\/2gk ; yet with a limited initial disturbance the motion begins

instantaneously at every point of the surface there is no definite

wave-front travelling out with finite velocity, as one might expect

at first sight.

Again, to take the opposite case, a medium can be specified for

which one can prove by exact methods that a discontinuity moves

forward with a definite finite velocity c, while the group velocity is

greater than c for all wave-lengths for which regular waves are

possible.

A similar difficulty has been raised for light waves. On ordinary

theories of dispersion, one has the possibility that for certain frequencies

the wave velocity and group velocity may be greater than the velocity

of light in free space ;
but on various grounds, for example from

electron theory or from the theory of relativity, one cannot admit that

this could be the case for an abrupt light signal, whatever the medium.

Such questions can only be resolved ultimately by a fuller specification

of the physical constitution of the medium; but we may remove

analytical difficulties by attention to certain matters which have been

tacitly ignored in the previous chapters, seeing that they did not arise

in the particular examples. Such matters include the nature of the

convergence of the Fourier integrals which have been used, also the

character of the velocity V as a function of the wave-length.

We shall examine in some detail later two definite examples of

wave-fronts in dispersive media, using the method of the Fourier

52
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integral with a complex variable. Before doing so we may obtain

suggestions in other ways as to the possibility of a travelling discon-

tinuous wave-front.

We may draw some inferences from the connection between non-

uniform convergence and discontinuity. In the first place we assume

convergence for the integrals with which we deal. Of course in some of

the examples in the previous chapters that is not the case, for example

when the initial disturbance is infinitely intense and concentrated near

the origin ;
but there is not much harm done in a particular case when

one is aware of the fact and can allow for it in any deductions. We
assume convergence in general, and we wish to find under what condi-

tions the function represented by the integral is discontinuous.

Consider first a continuous function /(*, x) of two variables x and *,

and the function F(x] defined by

F(x) =("/(*, a) da (118).
Ja

This integral converges uniformly in a certain range of x, say the

interval (xQt ^), if to every positive number however small there

corresponds a number X, independent of x
y
in the interval considered

Much that (119).

Further, it follows that the function F(x) is continuous in the same

range. Conversely, if F(x) is discontinuous at any value of x, the

fact is expressed in the non-uniform convergence of the integral for that

value.

In the Fourier integrals with which we are concerned /(*, x] is of

the form <(K)COSK(^- Vt\ where V is a function of *. We may
begin with some simple forms.

/OO

Consider F(x) = I <}>(K)e
iKX dK .................. (120),

where <j> (K) is such that for large values of * it can be expanded in a.

series

In this case the integral is uniformly convergent everywhere except
at the point # = 0; accordingly the function F(x} is discontinuous at

x - 0. Or to take a rather more general form

F(x}=\ (122),
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with the same conditions for <(*), the function F(x) has a single dis-

continuity at the point x = a.

We notice also that the test of uniformity of convergence given in

(119) shows that in the present example the matter depends on the

behaviour of the group of terms near infinitely large values of *, that

is upon the group of terms of infinitesimal wave-lengths. Suppose
that our initial disturbance is given by F(x) as in (122) and that

subsequently we have, considering positive waves only,

(123);

the question arises under what conditions for V would this mean a

definite wave-front of discontinuity travelling forward with finite

velocity. We have accordingly to examine the uniformity of conver-

gence of the new integral.

Let the function V be such that for large values of * we have the

expansion

+ ^+ ..................... (124),2 \ />

where c is a finite constant
;
in fact the limiting value of V for

infinite. Then we can write

=
JQ

(125),

_

where ^OO^OO*"'
i" Tsi "''

............... (126).

The integral is now in the same form as the simpler one in (122)

and
i/r (K) satisfies the same conditions as < (K) in regard to large values

of K. Consequently we infer that the integral is non-uniformly con-

vergent for x ct-a^. Thus the disturbance F(x,t) has a travel-

ling discontinuity which moves out with uniform velocity c. Under

the conditions we specified for V
y
the group velocity U has the

same limiting value c for K infinite. We conclude, from the test for

non-uniform convergence and as we should expect from physical con-

siderations, that a travelling discontinuity is associated with waves of

infinitely small wave-length ;
such a definite wave-front moves with

the group velocity for infinitely small waves and is only in evidence

when that is a finite quantity.

These considerations, which are only the outlines of a theoretical

discussion, may be illustrated by a few examples in which we can

confirm the deduction by other methods.
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For the dispersive medium of 28, a stretched string of which the

particles have an independent natural period, we have

V = Vfc
2 + noV) ;

U= K 2
/x/(*V +O ......... (127).

For K infinite both V and U have the limiting value c
;
hence a

discontinuous wave-front moves with this velocity.

Similarly in the case mentioned above, with

V - J(c*
-

wo
8

/*') ;
U = KcYx/(*V

- w 2
)

...... (128) ;

the same conclusion holds good, in spite of the fact that U> c for all

wave-lengths for which regular waves are possible.

For flexural waves on a rod, F=aic, Z7=2aic; both U and V
become infinite with K. No travelling wave-front is possible.

A similar inference follows in the case of water waves, where

V- X/Q//K) and 17=
.} V(#/K )- Here /Vand Fare zero for K infinite

;

hence if a discontinuity is possible at any point, it exists permanently
at that point,

In the case of light waves we may have a dispersion formula of the

type

ft
8 + 2

giving an equation between V and

cr V" _

Here again both V and U have the limiting value c for infinitely

short waves. Consequently the front of an abrupt light signal is

propagated in any such medium with the same velocity as in free

space.

It should be noticed that we assume the relation between V and K

to hold for all values. Whether that is justifiable in any case depends

upon the physical assumptions made in obtaining it
;
for example, the

dispersion formula for light waves assumes that the wave-length is

large compared with molecular distances. In fact in dealing with any
medium which we regard as ultimately molecular in constitution we

must examine each case on physical grounds before we can decide how

far it is legitimate to treat an abrupt variation as a mathematical dis-

continuity. All that is suggested by the above argument is that if a

discontinuity in a quantity y is allowable and if regular waves in y
have a phase velocity V given as a function of wave-length, then the

discontinuity travels with a velocity equal to the limiting value which

V approaches for infinitely small wave-lengths, provided the latter is

finite.
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35. Characteristics and wave-fronts. Another analytical

method of treating wave-fronts with discontinuities is connected with

the theory of the characteristics of the partial differential equation of

motion. An attempt to present an adequate account of this method

would take us too far from our main object of study, the Fourier

integral ; but it may be as well to state the leading idea briefly for

one or two simple cases with which we are concerned. For further

information reference may be made to memoirs or treatises dealing

specially with discontinuous wave-fronts and characteristics (50)(81)
.

Consider the differential equation which we had in 28 for the

stretched string with a dispersive property ;
it can be written as

Let there be at any instant a definite wave-front separating two

possible states of motion of the string, such that y, dy/dx and dy/dt are

continuous at the wave-front : the discontinuity being in derivatives

of a higher order. Now regard for a moment y, x and t as space

coordinates, and any solution of (130) as an integral surface in this

space; then the statement is equivalent to postulating two integral

surfaces touching along a certain curve which projects into the wave-

front on the x, t plane. But from the theory of the characteristics of

an equation like (130), such a curve of contact of two integral surfaces

is a characteristic curve of which the projection on the #, t plane

satisfies

(far
8 - cW - 0.

Consequently the wave-front moves with uniform velocity c in

either the positive or negative direction of Ox, and we notice that this

holds independently of the dispersive property which is specified by the

term n*y in the equation (130).

The argument can be extended in certain cases to include wave-

fronts in which the discontinuity is of the first order. In the case of

(130) it is unnecessary that y, ty/dx, and dy/dt should be each con-

tinuous at the wave-front, corresponding to Cauchy's condition in the

theory of the partial differential equation ;
it is sufficient that two

quantities, y and one of the quantities dy/dady/cdt, should be con-

tinuous and the correspondence of wave-front and characteristic

follows.

We cannot in general identify characteristics with wave-fronts in

which the discontinuity is of the first order without falling back upon

physical principle?. Naturally the differential equation of the second
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order may have been obtained under assumptions which are not valid

when the differential coefficients of the first order are not continuous ;

accordingly an independent study of such a discontinuity may be

equivalent to discarding the differential equation and might lead to a

different velocity of propagation, a case in point being explosion-waves

in a gas.

Contrast equation (130) with one like

d2?/ <Py 2 _ A* * 71^"
In this case the characteristic curves are imaginary, and there is no

propagation of wave-fronts with definite finite velocity. A similar

conclusion holds for an equation such as that for the flow of heat, in

which the families of characteristics are real but coincident.

If the medium is specified by a single partial differential equation

of the second order which is of hyperbolic type, having two real and

different families of characteristics, we may conclude that there may
be definite wave-fronts moving with finite velocity. A similar inference

can be drawn in certain cases for equations of higher order and for

systems of equations.

36. Riemann's method applied to dispersive string.

Before leaving the theory of characteristics, we may apply Riemann's

method to obtain an exact solution of the differential equation (130)

under given initial conditions. In the equation, y represents the trans-

verse displacement of a string stretched along Ox at constant tension and

such that every point is attracted to its position of equilibrium by a

force proportional to its displacement.

Simplify the equation by writing x for CX/?IQ and t for t/na ;
then

we have

With #-=; x + t

the equation reduces to the standard form

in which the characteristics are lines parallel to the axes of and

To apply Riemann's method we suppose the values of y, tyfif,

to be given at points of a curve G in the plane of 17. If P is the point,

in the same plane, at which we require the value of z, we draw through
P two characteristics, parallel in this case to the axes of and 77 ;
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then the value of z at P is expressed in terms of the initial data upon
the part of the curve G cut off between the two characteristics. In

the particular problem for the original equation in x and t we should

assume initial data of the form

*=/(*); =
- fbr* = .(133).

In the new coordinates, this would be equivalent to data along the

line

-17 = 0.

In particular, suppose we have an initial disturbance which is

limited in range, so that f(x) and F(x) are zero outside this range;

then the data in
, 77 would be given along a finite range a/3 of the

bisector of the angle between and Orj.

Fig. 22.

Consider the sequence of events at an assigned position #, outside

the original disturbance
;

as time goes on, t ranging from to <x>
,
the

corresponding point P moves along a line such as CD at right angles

to OC. At a time when P is at a position like Plt the range A lBl

cut out by the characteristics through Pl includes nothing from a/3 ;

accordingly the value of z is zero at such a time. It is easy to see

that z remains zero until a certain instant at which the disturbance

begins definitely; the instant is determined by the time taken for

a discontinuous wave-front to travel from the nearest point of the
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original limited disturbance. We may note incidentally that there is

no definite rear to the disturbance.

It is unnecessary to work through the details of the exact solution of

(130) under the initial conditions given in (133) ;
the equation is similar

to one which has been studied in connection with damped electric

vibrations, known as the telegraphists* equation, and in fact only

differs from it by the coefficient of z in the last term being positive

instead of negative.

An exact solution can be obtained in the form

& \*^/
'

(P)f(q) dq
J X~ t JJ

Jx-t

where p^ J{#-(x-q)*\ ..................... (134).

In particular, put /(#)
~

0, and F(x} =
TT/C in the range

- < x < e

and zero outside it
;
then proceed to the limit with c small. We

obtain an intense distribution of initial velocity concentrated at the

origin, and the motion at any subsequent time, for x and t positive, is

given by
z -

;
for t < x>

s-7r/ (V*
2

~^); foTt>x ............... (135).

We can compare this solution with the approximate evaluation by

group methods applied to a Fourier integral. Before doing so, it is of

interest to obtain it in any other way by using a Fourier integral with

complex variable.

37. Localised impulse on dispersive string. We begin

by stating the problem in real variables. The differential equation
for transverse vibrations of the string is

If initially we have a simple harmonic distribution of velocity,

so that

* = 0; J-COSK#;
* = .................. (137),

the subsequent motion is given by
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For an initial distribution of velocity F(x) we can generalise by
Fourier's theorem ; finally if the distribution is intense and concentrated

at the origin we have as before

/ __ ^K- 2 I sin (t ^/K
2 + i) cos KX

7--
_

Jo x/K
2 + 1

-f7o
Each of these integrals comes under the class discussed in 34.

For K large we can write

where <(*) is a power series in I IK. It follows that discontinuities

occur at the places given by

# + = and #- = 0.
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These places travel out from the origin with unit velocity, which in

this case is the limiting value of the group velocity for infinitely short

waves.

We may evaluate the above integrals by taking them along suitable

paths in the plane of * considered as a complex variable. Take the

second integral, in the form

/+
J

"
IJ

.(140).

The integrand has singularities at the points i. Consider the

integral along a path such as (1) in Fig. 23, and confine our attention

to positive values of x. When t = 0, /2 is zero
;

for we can transform

the path (1) into a path (2) at + /oo, in which case the exponential

in /a has a real negative exponent.

When t is positive and such that x -
1 > 0, the same conclusion

follows
;
the integral along the path (2) is zero as long as t<x*

But when x - 1 < 0, the exponential has a real positive exponent

along the path (2), so deformation of the path in that way is of no

assistance in evaluating the integral. In this case we deform the

''4

Fig. 24.

path into the form (3), where we can say that the integral along the

part of the path at - ice is zero. We are in fact left with the integral

72 taken round the path (4) or any equivalent path enclosing the two

points i.
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If we write = ix
;

r - it
; q^i*\

r
,
_ d<7

we have 7a
=
J
*<rf-*V-i)

-r^^-
............... (141),

where the integral is taken round a contour enclosing the singular

points, which are now at 1. This integral can be evaluated in terms

of Bessel functions and is in fact equal to ~ irK^ (\/r
2 - 2

) ; accordingly

we have

r

J

=
0, for -#<0 ...... (142).

Similar conclusions hold in regard to the first integral in (139) ;

in particular, for x and t positive the first integral is zero. The final

result is given for x and t positive by

z = 0, for t < x

-7r/ (V^^), for t>x ............... (143).

This indicates a disturbance moving out from the origin, having a

definite front moving with unit velocity.

The diagram in Fig. 25 shows the disturbance at a particular

instant, namely t = 50, graphed from the above formula. It is

interesting to notice how the form bears out the general ideas of

group propagation. As t is increased, the number of zeros in a small

range of x behind the wave-front rapidly increases, indicating a greater

predominance of smaller wave-lengths at the front as time goes on.

To make a numerical comparison, we apply the Kelvin group method

to this example.

From (139) we have

d*

.-c

-
I

7o
TV r... (144).v x2 +1 ^ '

For x and t positive a predominant group occurs in the second

integral for * given by

U =
~t

In this case the result is consistent with the exact solution, for

K/\/K
2 + 1 is less than 1 for all positive values of K

;
hence the pre-

dominant group occurs at places and times for which x <
t, that is, it
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occurs behind the wave-front. The value of the group is given by

Using the value of * given above, this reduces to

This agrees precisely with the asymptotic value of ir

being the first term in the semi-convergent expansion of the Bessel

function for large arguments. The comparison between the group

value (146) and the exact result (143) can easily be made in this case.

For any considerable value of t the agreement is in fact very close up
to fairly small distances from the wave-front, the differences becoming
less further behind the front. For example, the first two zeros behind

the wave-front occur at x equal to 49*942 arid 49*694, while the group
formula gives the values 49*945 and 49*697 respectively ;

later zeros

agree more closely. Similar results hold if we calculate any actual

value of z from the two formula). In fact in the graph for t equal

to 50 which is shown in Fig. 25 there would be no appreciable differ-

ence until practically at the wave-front. Of course for the state of

affairs actually at the wave-front we should have to retrace our steps

and reconsider the assumptions made in regard to the initial distribu-

tion of velocity. It was supposed to be concentrated practically at

the origin. In order to study more carefully the disturbance at x = t

it would be advisable to start from some continuous initial disturbance

of finite though small range, and then if necessary consider the limiting

value of the exact solutions.

Fig. 25.
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In the case of pulses of light, even using the simplest type of

dispersion formulas, mathematical solutions become extremely compli-

cated. One might investigate various problems for the dynamical

medium of the previous section with more chance of success
;
exact

solutions can be written down in the form (134) as integrals involving

Bessel functions, though they would probably have to be evaluated by

approximate methods. By considering an infinite string of which one-

half is dispersive and the other a simple non-dispersive string, one

might illustrate the reflection and transmission of pulses of varying

types or of a finite train of regular waves ; or one might examine the

proportion of energy which persists near the front of the pulse in

various cases.

38. Medium with group velocity greater than velocity
of wave-front. Returning to the concentrated initial distribution

of velocity at the origin we consider a medium suggested by Ehrenfest

as a case in which the group method fails. The medium may be

specified as a string under constant tension and with each element

repelled transversely by a force proportional to the transverse displace-

ment
; accordingly the differential equation is of the form

It must be noticed in the first place that the string is in unstable

equilibrium in its position of rest. However if we assume an infinite

regular wave cos K (x Vt) as a possible solution, V is real if * > 1
;
for

we have
'r=; 17 = ............... (148).

K v* 1

As we have seen previously in 34 or by the method of 35,

a definite wave-front moves in this medium with unit velocity ;
while

the group velocity is greater than unity for all values of K for which

regular waves are possible.

If K < 1, the corresponding form of solution is

(149),

which does not represent a wave propagation in the ordinary use of the

term.

If we attempt to build up in the Fourier method a solution

corresponding to an arbitrary initial form, the Fourier integral breaks

up into two parts, one representing regular waves and the other part
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non-waves. To revert to the original example of the Kelvin method,

consider the integral

.(150).
=~~ I

In the group evaluation of this integral it was assumed that V was

a function of * having a real value for all values of *
; consequently

the terms oscillate and cancel each other out on the average except for

certain predominant groups for which the phase is stationary. But

clearly this method fails to take account of any range of * for which

V is imaginary; in cases where this occurs the group method only

gives an approximation for the parts of the integral which represent

ordinary wave propagation, and the other parts must be evaluated

separately.

For the present case we may illustrate by the same problem as in

the previous section. Let the displacement be zero initially, and let

there be an intense concentrated distribution of velocity. Then we

obtain the solution z as a Fourier integral in a complex variable * in

the form

~^ r et-oc+N/^) JL__.- r ^-w^) _j*L= ...MSI).
.'-, >/ X/K" - 1 7-cc Vi x/K

2 - 1
^ ^

These integrals are of the same form as those of the previous section
;

they can be evaluated by contour integration in a similar manner, and

the final result is

z - 0, for t < x

- *K ( JJ*
"-"^J

)
=

TT./O (i V> - ,/*) ,
for t > x ...... (152).

If we graph this solution we have an abrupt front to the wave

followed by a steadily and rapidly increasing displacement, without

any oscillation
;

the result is in direct contrast with that of the

previous example, and it agrees with the fact that the medium is not

stable.

Compare this with the group method. As we have seen, this

method gives an approximate value of the part of the integral which

represents regular waves, in this case, for positive x,

*

(153).-I
/I

-
, 2

- -

V K JL

The predominant group is given by
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But since U> 1, the predominant group occurs at places and times

for which x > t, that is, in advance of the definite travelling front of

the disturbance. Further if we apply the group formula in the usual

manner, we have as the contribution of the regular waves in the

region x>t,

(154),

which is the asymptotic value of irJQ *Jgp - f, or of irK<> \/
2 -

a?, for x > t

and x t large.

If we attempt to separate the complex integrals in (151) into two

parts representing waves and non-waves, as in the diagram, we have

difficulty in the region of the points 1
;

or in other words we cannot

-1 + 1

Fig. 26.

distinguish between the two cases : a regular wave in which the phase
is transmitted with infinitely large velocity, and a non-wave in which

the phase appears established everywhere at once. In any case, since

the total integral is zero in advance of the wave-front, the part due to

the regular waves must exactly equal, and be of opposite sign from,

that due to the non-waves. One could then retain the idea of groups
of waves in this case by such considerations : the non-waves represent
a disturbance with phase established instantaneously, while the regular
waves form groups in advance of the position x = t of such a value as

to cancel exactly the part due at such places to the non-waves, the

result being a definite wave-front leaving the disturbance behind as it

advances. Such would be a possible statement for the present problem ;

whether it would apply for similar cases in other media is unresolved.

The question arises how far such considerations affect the utility of

the group method, for example in light waves. In this respect it

should be noticed that the medium studied above is very exceptional
in that U>c for all wave-lengths possible, while on usual theories of

dispersion this would be the case only for narrow regions of selective

absorption ;
it would be a matter for investigation whether these

regions were of importance in the Fourier integral for any given case.

H. 6
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39. Light signal : interrupted source of light waves.
In the simple dynamical media which we have considered above, the

vibrations being in a coordinate y, the problem is determinate if we

are given the values of y and dy/dt initially for all values of x. The

matter is more complex for electromagnetic waves in a dispersive

medium
;
for example, for the simplest type of dispersion formula with

one natural frequency, there may be two values of V for any assigned

wave-length ;
the two values correspond to different frequencies. As

we saw when dealing with the flow of energy, the state at any point, say

the electrical displacement, does not depend only on the actual electric

force at that point but also on its time derivatives. However there is

a single value of V for any assigned frequency ; accordingly one can

deal with problems which involve a Fourier analysis into frequencies.

Such problems occur when the disturbance is given as a definite

function of the time at some assigned position ;
in other words we deal

with the effects of a localised source whose magnitude varies with the

time in an assigned manner.

Sommerfeld <M) has discussed recently the propagation of a light

signal in a dispersive medium from this point of view, and we give a

short account of his method.

Suppose the disturbance to be given at the origin # = by a

function f(i) defined by

= 0, for t<0 and for t> T

= sin
, for 0<t<T .................. (155);

where the time T includes a complete number of periods r.

We could represent f(t) by a Fourier integral ranging over all

possible frequencies. We can also think of the disturbance as a

semi-infinite regular vibration beginning at = on which is super-

posed another semi- infinite vibration of opposite phase beginning at

t = T so as to cancel out the effect for t > 2\ Using the complex
form of the Fourier integral we can then represent one such semi-infinite

vibration at the origin by

At any position x in the dispersive medium we shall have

-<(#-**) dP (\ e 7 \

<S_ A>~/-Aa VIO U>



VII] LIGHT SIGNAL: INTERRUPTED SOURCE OF LIGHT WAVES 83

where the medium is supposed to have a dispersion formula

The integral is to be taken along any path such as u in Fig. 27.

This path can be deformed in the manner of the simpler examples in

the previous sections.

+ 00

Fig. 27.

When ct < x, the path u can be deformed into the path a entirely

at + 1^>
,
for which the integral is zero.

When ct > x
y
the path is deformed into the path b. Of this path,

bi is at i<x> and contributes zero, and the parts 62 also have zero

value on the whole. The circuits &3 and 64 are round the singular

points p -
27T/T ;

while b5 and 66 enclose the branch points

-ip Vp?17? and -ip vpo
2Ta2 ~p2

.

The integrals round 63 and &4 are calculated in the form

.(159),

representing a forced wave of the frequency of the source and with

suitable wave-length and extinction-coefficient.
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The integrals 66 and 66 are not evaluated. They represent the free

natural vibrations of the vibrating particles in the medium. Their

value at x = ct is such that the total disturbance is zero there. In

advance of the position ct at any time there is no disturbance, so we

have a definite wave-front.

Sommerfeld discusses also the uniqueness of the solution, the

spectrum of the disturbance and its connection with group methods,

and also obtains an approximate expression for the immediate rear of

the wave-front when the coefficient of absorption is negligible. Even

when the simplest type of dispersion formula is assumed, it appears

that the integrals involved are too complicated for exact evaluation
;

as was suggested in a previous section one might obtain analogous

results of interest by applying similar methods to a dynamical medium

of simpler specification *.

* Mention may be made here of work which has been published while this

Tract has been in the Press. A very interesting extension of Sommerfeld's analysis

has been made by Brillouin(55), who uses contour integrations and a method of

approximation which forms a generalisation of the group method. Some further

references for this method have been added to the Bibliography I
56

)' (
57

). Energy
distribution and the action of a prism on white light have been discussed by
Green (

M
) and by Houston (

59
)> (

80
).
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